freq_array = np.linspace(0, sample_rate / 2, num_samples // 2 + 1)

时间: 2024-06-06 13:09:30 浏览: 123
这段代码是用来做什么的? 这段代码是用来生成一个包含频率值的数组,该数组的长度为 num_samples // 2 - 1。其中,sample_rate 是采样率,num_samples 是采样点数。np.linspace(0, sample_rate / 2, num_samples // 2 - 1) 的作用是生成一个从 0 到 sample_rate / 2(采样定理中的奈奎斯特频率)的等距数组,用于表示频率轴。该数组中的元素数量用 num_samples // 2 - 1 来保证只包含正频率分量,因为复数的频率分量是对称的,包括负频率分量。
相关问题

详细解释以下Python代码:import numpy as np import adi import matplotlib.pyplot as plt sample_rate = 1e6 # Hz center_freq = 915e6 # Hz num_samps = 100000 # number of samples per call to rx() sdr = adi.Pluto("ip:192.168.2.1") sdr.sample_rate = int(sample_rate) # Config Tx sdr.tx_rf_bandwidth = int(sample_rate) # filter cutoff, just set it to the same as sample rate sdr.tx_lo = int(center_freq) sdr.tx_hardwaregain_chan0 = -50 # Increase to increase tx power, valid range is -90 to 0 dB # Config Rx sdr.rx_lo = int(center_freq) sdr.rx_rf_bandwidth = int(sample_rate) sdr.rx_buffer_size = num_samps sdr.gain_control_mode_chan0 = 'manual' sdr.rx_hardwaregain_chan0 = 0.0 # dB, increase to increase the receive gain, but be careful not to saturate the ADC # Create transmit waveform (QPSK, 16 samples per symbol) num_symbols = 1000 x_int = np.random.randint(0, 4, num_symbols) # 0 to 3 x_degrees = x_int*360/4.0 + 45 # 45, 135, 225, 315 degrees x_radians = x_degrees*np.pi/180.0 # sin() and cos() takes in radians x_symbols = np.cos(x_radians) + 1j*np.sin(x_radians) # this produces our QPSK complex symbols samples = np.repeat(x_symbols, 16) # 16 samples per symbol (rectangular pulses) samples *= 2**14 # The PlutoSDR expects samples to be between -2^14 and +2^14, not -1 and +1 like some SDRs # Start the transmitter sdr.tx_cyclic_buffer = True # Enable cyclic buffers sdr.tx(samples) # start transmitting # Clear buffer just to be safe for i in range (0, 10): raw_data = sdr.rx() # Receive samples rx_samples = sdr.rx() print(rx_samples) # Stop transmitting sdr.tx_destroy_buffer() # Calculate power spectral density (frequency domain version of signal) psd = np.abs(np.fft.fftshift(np.fft.fft(rx_samples)))**2 psd_dB = 10*np.log10(psd) f = np.linspace(sample_rate/-2, sample_rate/2, len(psd)) # Plot time domain plt.figure(0) plt.plot(np.real(rx_samples[::100])) plt.plot(np.imag(rx_samples[::100])) plt.xlabel("Time") # Plot freq domain plt.figure(1) plt.plot(f/1e6, psd_dB) plt.xlabel("Frequency [MHz]") plt.ylabel("PSD") plt.show(),并分析该代码中QPSK信号的功率谱密度图的特点

这段Python代码的作用是使用ADI Pluto SDR设备生成并传输一个QPSK信号,并将接收到的信号进行功率谱密度分析。下面是对代码的注释: ``` import numpy as np import adi import matplotlib.pyplot as plt # 设置采样率、中心频率和采样点数 sample_rate = 1e6 # Hz center_freq = 915e6 # Hz num_samps = 100000 # number of samples per call to rx() # 连接ADI Pluto SDR设备 sdr = adi.Pluto("ip:192.168.2.1") sdr.sample_rate = int(sample_rate) # 配置发送端的参数 sdr.tx_rf_bandwidth = int(sample_rate) # filter cutoff, just set it to the same as sample rate sdr.tx_lo = int(center_freq) sdr.tx_hardwaregain_chan0 = -50 # Increase to increase tx power, valid range is -90 to 0 dB # 配置接收端的参数 sdr.rx_lo = int(center_freq) sdr.rx_rf_bandwidth = int(sample_rate) sdr.rx_buffer_size = num_samps sdr.gain_control_mode_chan0 = 'manual' sdr.rx_hardwaregain_chan0 = 0.0 # dB, increase to increase the receive gain, but be careful not to saturate the ADC # 创建发送的QPSK信号 num_symbols = 1000 x_int = np.random.randint(0, 4, num_symbols) # 0 to 3 x_degrees = x_int*360/4.0 + 45 # 45, 135, 225, 315 degrees x_radians = x_degrees*np.pi/180.0 # sin() and cos() takes in radians x_symbols = np.cos(x_radians) + 1j*np.sin(x_radians) # this produces our QPSK complex symbols samples = np.repeat(x_symbols, 16) # 16 samples per symbol (rectangular pulses) samples *= 2**14 # The PlutoSDR expects samples to be between -2^14 and +2^14, not -1 and +1 like some SDRs # 启动发送端并发送信号 sdr.tx_cyclic_buffer = True # Enable cyclic buffers sdr.tx(samples) # start transmitting # 接收接收端的信号 for i in range (0, 10): raw_data = sdr.rx() # Receive samples rx_samples = sdr.rx() print(rx_samples) # 停止发送端 sdr.tx_destroy_buffer() # 计算接收到的信号的功率谱密度 psd = np.abs(np.fft.fftshift(np.fft.fft(rx_samples)))**2 psd_dB = 10*np.log10(psd) f = np.linspace(sample_rate/-2, sample_rate/2, len(psd)) # 绘制时域图 plt.figure(0) plt.plot(np.real(rx_samples[::100])) plt.plot(np.imag(rx_samples[::100])) plt.xlabel("Time") # 绘制频域图 plt.figure(1) plt.plot(f/1e6, psd_dB) plt.xlabel("Frequency [MHz]") plt.ylabel("PSD") plt.show() ``` 以上代码生成了一个随机QPSK信号,通过ADI Pluto SDR设备将其传输,并使用Pluto SDR设备接收该信号。接收到的信号进行了功率谱密度分析,并绘制了频域图。 QPSK信号的功率谱密度图的特点是,其频谱表现为四个簇,每个簇对应QPSK信号的一个符号。每个簇的带宽约为基带信号的带宽,且由于使用矩形脉冲,每个簇的带宽之间有一定的重叠。此外,功率谱密度图中还可以看到一些其他频率分量,这些分量可能是由于接收信号中存在其他干扰或噪声导致的。

优化这段import numpy as np import matplotlib.pyplot as plt %config InlineBackend.figure_format='retina' def generate_signal(t_vec, A, phi, noise, freq): Omega = 2*np.pi*freq return A * np.sin(Omega*t_vec + phi) + noise * (2*np.random.random def lock_in_measurement(signal, t_vec, ref_freq): Omega = 2*np.pi*ref_freq ref_0 = 2*np.sin(Omega*t_vec) ref_1 = 2*np.cos(Omega*t_vec) # signal_0 = signal * ref_0 signal_1 = signal * ref_1 # X = np.mean(signal_0) Y = np.mean(signal_1) # A = np.sqrt(X**2+Y**2) phi = np.arctan2(Y,X) print("A=", A, "phi=", phi) # t_vec = np.linspace(0, 0.2, 1001) A = 1 phi = np.pi noise = 0.2 ref_freq = 17.77777 # signal = generate_signal(t_vec, A, phi, noise, ref_freq) # lock_in_measurement(signal, t_vec, ref_freq)

import numpy as np import matplotlib.pyplot as plt %config InlineBackend.figure_format='retina' def generate_signal(t_vec, A, phi, noise, freq): Omega = 2*np.pi*freq return A * np.sin(Omega*t_vec + phi) + noise * (2*np.random.random()) def lock_in_measurement(signal, t_vec, ref_freq): Omega = 2*np.pi*ref_freq ref_0 = 2*np.sin(Omega*t_vec) ref_1 = 2*np.cos(Omega*t_vec) signal_0 = signal * ref_0 signal_1 = signal * ref_1 X = np.mean(signal_0) Y = np.mean(signal_1) A = np.sqrt(X**2+Y**2) phi = np.arctan2(Y,X) print("A=", A, "phi=", phi) t_vec = np.linspace(0, 0.2, 1001) A = 1 phi = np.pi noise = 0.2 ref_freq = 17.77777 signal = generate_signal(t_vec, A, phi, noise, ref_freq) lock_in_measurement(signal, t_vec, ref_freq)
阅读全文

相关推荐

优化这段import numpy as np import matplotlib.pyplot as plt %config InlineBackend.figure_format='retina' # 输入信号 def inputVoltageSignal_func(t_vec, A, phi, noise, freq): Omega = 2np.pifreq return Anp.sin(Omegat_vec + phi) + noise * (2np.random.random(t_vec.size)-1) # 锁相测量部分 def LockinMeasurement_func(inputVoltageSignal, t_vec, ref_freq): # 生成参考信号 sin_ref = 2np.sin(2 * np.pi * ref_freq * t_vec) cos_ref = 2*np.cos(2 * np.pi * ref_freq * t_vec) # 混频信号 signal_0 = inputVoltageSignal * sin_ref signal_1 = inputVoltageSignal * cos_ref # 低通滤波 X = np.mean(signal_0) Y = np.mean(signal_1) # 计算振幅和相位 A = np.sqrt(X2 + Y2) phi = np.arctan2(Y, X) return A, phi # 参数 A = 1 phi = 0 noise = 1 ref_freq = 100 t_vec = np.linspace(0, 0.2, 1001) # 列表来保存幅值和相位数据 amplitude_list = [] phase_list = [] freq_list = np.arange(1, 1001) # 循环计算不同频率下的幅值和相位 for freq in freq_list: # 生成原始信号 Vin_vec = inputVoltageSignal_func(t_vec, A, phi, noise, freq=freq) # 锁相测量 A, phi = LockinMeasurement_func(Vin_vec, t_vec, ref_freq=freq) # 保存幅值和相位数据 amplitude_list.append(A) phase_list.append(phi) #绘图 # 幅值与频率的关系图 plt.figure(figsize=(10, 6)) plt.subplot(2,1,1) plt.plot(freq_list, amplitude_list) plt.xlabel('freq (Hz)') plt.ylabel('A') plt.title('relationship between A and freq') plt.show() # 相位与频率的关系图 plt.figure(figsize=(10, 6)) plt.subplot(2,1,2) plt.plot(freq_list, phase_list) plt.xlabel('freq (Hz)') plt.ylabel('Phi') plt.title('relationship between Phi and freq') plt.show()使用while循环

优化这段pythonimport numpy as np import matplotlib.pyplot as plt import math # 待测信号 freq = 17.77777 # 信号频率 t = np.linspace(0, 0.2, 1001) Omega =2 * np.pi * freq phi = np.pi A=1 x = A * np.sin(Omega * t + phi) # 加入噪声 noise = 0.2 * np.random.randn(len(t)) x_noise = x + noise # 参考信号 ref0_freq = 17.77777 # 参考信号频率 ref0_Omega =2 * np.pi * ref0_freq ref_0 = 2np.sin(ref0_Omega * t) # 参考信号90°相移信号 ref1_freq = 17.77777 # 参考信号频率 ref1_Omega =2 * np.pi * ref1_freq ref_1 = 2np.cos(ref1_Omega * t) # 混频信号 signal_0 = x_noise * ref_0 signal_1 = x_noise * ref_1 # 绘图 plt.figure(figsize=(13,4)) plt.subplot(2,3,1) plt.plot(t, x_noise) plt.title('input signal', fontsize=13) plt.subplot(2,3,2) plt.plot(t, ref_0) plt.title('reference signal', fontsize=13) plt.subplot(2,3,3) plt.plot(t, ref_1) plt.title('phase-shifted by 90°', fontsize=13) plt.subplot(2,3,4) plt.plot(t, signal_0) plt.title('mixed signal_1', fontsize=13) plt.subplot(2,3,5) plt.plot(t, signal_1) plt.title('mixed signal_2', fontsize=13) plt.tight_layout() # 计算平均值 X = np.mean(signal_0) Y = np.mean(signal_1) print("X=",X) print("Y=",Y) # 计算振幅和相位 X_square =X2 Y_square =Y2 sum_of_squares = X_square + Y_square result = np.sqrt(sum_of_squares) Theta = np.arctan2(Y, X) print("R=", result) print("Theta=", Theta),把输入信号部分整理成函数:输入参数为t_vec,A,phi,noise;锁相测量部分也整理成代码,输入待测周期信号,以及频率freq,输出为A,phi,不用绘图

最新推荐

recommend-type

李白高力士脱靴李白贺知章告别课本剧.pptx

李白高力士脱靴李白贺知章告别课本剧.pptx
recommend-type

Spring Cloud 学习过程记录,含多方面知识及系列教程.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

C语言项目之超级万年历系统源码.zip

C语言项目之超级万年历系统源码,可以做课程设计参考 文章参考:https://www.qqmu.com/4373.html
recommend-type

Jupyter_OReilly书的代码存储库.zip

Jupyter-Notebook
recommend-type

高清艺术文字图标资源,PNG和ICO格式免费下载

资源摘要信息:"艺术文字图标下载" 1. 资源类型及格式:本资源为艺术文字图标下载,包含的图标格式有PNG和ICO两种。PNG格式的图标具有高度的透明度以及较好的压缩率,常用于网络图形设计,支持24位颜色和8位alpha透明度,是一种无损压缩的位图图形格式。ICO格式则是Windows操作系统中常见的图标文件格式,可以包含不同大小和颜色深度的图标,通常用于桌面图标和程序的快捷方式。 2. 图标尺寸:所下载的图标尺寸为128x128像素,这是一个标准的图标尺寸,适用于多种应用场景,包括网页设计、软件界面、图标库等。在设计上,128x128像素提供了足够的面积来展现细节,而大尺寸图标也可以方便地进行缩放以适应不同分辨率的显示需求。 3. 下载数量及内容:资源提供了12张艺术文字图标。这些图标可以用于个人项目或商业用途,具体使用时需查看艺术家或资源提供方的版权声明及使用许可。在设计上,艺术文字图标融合了艺术与文字的元素,通常具有一定的艺术风格和创意,使得图标不仅具备标识功能,同时也具有观赏价值。 4. 设计风格与用途:艺术文字图标往往具有独特的设计风格,可能包括手绘风格、抽象艺术风格、像素艺术风格等。它们可以用于各种项目中,如网站设计、移动应用、图标集、软件界面等。艺术文字图标集可以在视觉上增加内容的吸引力,为用户提供直观且富有美感的视觉体验。 5. 使用指南与版权说明:在使用这些艺术文字图标时,用户应当仔细阅读下载页面上的版权声明及使用指南,了解是否允许修改图标、是否可以用于商业用途等。一些资源提供方可能要求在使用图标时保留作者信息或者在产品中适当展示图标来源。未经允许使用图标可能会引起版权纠纷。 6. 压缩文件的提取:下载得到的资源为压缩文件,文件名称为“8068”,意味着用户需要将文件解压缩以获取里面的PNG和ICO格式图标。解压缩工具常见的有WinRAR、7-Zip等,用户可以使用这些工具来提取文件。 7. 具体应用场景:艺术文字图标下载可以广泛应用于网页设计中的按钮、信息图、广告、社交媒体图像等;在应用程序中可以作为启动图标、功能按钮、导航元素等。由于它们的尺寸较大且具有艺术性,因此也可以用于打印材料如宣传册、海报、名片等。 通过上述对艺术文字图标下载资源的详细解析,我们可以看到,这些图标不仅是简单的图形文件,它们集合了设计美学和实用功能,能够为各种数字产品和视觉传达带来创新和美感。在使用这些资源时,应遵循相应的版权规则,确保合法使用,同时也要注重在设计时根据项目需求对图标进行适当调整和优化,以获得最佳的视觉效果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DMA技术:绕过CPU实现高效数据传输

![DMA技术:绕过CPU实现高效数据传输](https://res.cloudinary.com/witspry/image/upload/witscad/public/content/courses/computer-architecture/dmac-functional-components.png) # 1. DMA技术概述 DMA(直接内存访问)技术是现代计算机架构中的关键组成部分,它允许外围设备直接与系统内存交换数据,而无需CPU的干预。这种方法极大地减少了CPU处理I/O操作的负担,并提高了数据传输效率。在本章中,我们将对DMA技术的基本概念、历史发展和应用领域进行概述,为读
recommend-type

SGM8701电压比较器如何在低功耗电池供电系统中实现高效率运作?

SGM8701电压比较器的超低功耗特性是其在电池供电系统中高效率运作的关键。其在1.4V电压下工作电流仅为300nA,这种低功耗水平极大地延长了电池的使用寿命,尤其适用于功耗敏感的物联网(IoT)设备,如远程传感器节点。SGM8701的低功耗设计得益于其优化的CMOS输入和内部电路,即使在电池供电的设备中也能提供持续且稳定的性能。 参考资源链接:[SGM8701:1.4V低功耗单通道电压比较器](https://wenku.csdn.net/doc/2g6edb5gf4?spm=1055.2569.3001.10343) 除此之外,SGM8701的宽电源电压范围支持从1.4V至5.5V的电
recommend-type

mui框架HTML5应用界面组件使用示例教程

资源摘要信息:"HTML5基本类模块V1.46例子(mui角标+按钮+信息框+进度条+表单演示)-易语言" 描述中的知识点: 1. HTML5基础知识:HTML5是最新一代的超文本标记语言,用于构建和呈现网页内容。它提供了丰富的功能,如本地存储、多媒体内容嵌入、离线应用支持等。HTML5的引入使得网页应用可以更加丰富和交互性更强。 2. mui框架:mui是一个轻量级的前端框架,主要用于开发移动应用。它基于HTML5和JavaScript构建,能够帮助开发者快速创建跨平台的移动应用界面。mui框架的使用可以使得开发者不必深入了解底层技术细节,就能够创建出美观且功能丰富的移动应用。 3. 角标+按钮+信息框+进度条+表单元素:在mui框架中,角标通常用于指示未读消息的数量,按钮用于触发事件或进行用户交互,信息框用于显示临时消息或确认对话框,进度条展示任务的完成进度,而表单则是收集用户输入信息的界面组件。这些都是Web开发中常见的界面元素,mui框架提供了一套易于使用和自定义的组件实现这些功能。 4. 易语言的使用:易语言是一种简化的编程语言,主要面向中文用户。它以中文作为编程语言关键字,降低了编程的学习门槛,使得编程更加亲民化。在这个例子中,易语言被用来演示mui框架的封装和使用,虽然描述中提到“如何封装成APP,那等我以后再说”,暗示了mui框架与移动应用打包的进一步知识,但当前内容聚焦于展示HTML5和mui框架结合使用来创建网页应用界面的实例。 5. 界面美化源码:文件的标签提到了“界面美化源码”,这说明文件中包含了用于美化界面的代码示例。这可能包括CSS样式表、JavaScript脚本或HTML结构的改进,目的是为了提高用户界面的吸引力和用户体验。 压缩包子文件的文件名称列表中的知识点: 1. mui表单演示.e:这部分文件可能包含了mui框架中的表单组件演示代码,展示了如何使用mui框架来构建和美化表单。表单通常包含输入字段、标签、按钮和其他控件,用于收集和提交用户数据。 2. mui角标+按钮+信息框演示.e:这部分文件可能展示了mui框架中如何实现角标、按钮和信息框组件,并进行相应的事件处理和样式定制。这些组件对于提升用户交互体验至关重要。 3. mui进度条演示.e:文件名表明该文件演示了mui框架中的进度条组件,该组件用于向用户展示操作或数据处理的进度。进度条组件可以增强用户对系统性能和响应时间的感知。 4. html5标准类1.46.ec:这个文件可能是核心的HTML5类库文件,其中包含了HTML5的基础结构和类定义。"1.46"表明这是特定版本的类库文件,而".ec"文件扩展名可能是易语言项目中的特定格式。 总结来说,这个资源摘要信息涉及到HTML5的前端开发、mui框架的界面元素实现和美化、易语言在Web开发中的应用,以及如何利用这些技术创建功能丰富的移动应用界面。通过这些文件和描述,可以学习到如何利用mui框架实现常见的Web界面元素,并通过易语言将这些界面元素封装成移动应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依