OpenCV+Python+Dlib面部标定、眨眼和疲劳检测代码

时间: 2023-09-03 20:13:20 浏览: 137
ZIP

openCV和python基于dlib库实现眨眼/睁闭眼检测--亲测高效

以下是OpenCV、Python和Dlib实现面部标定、眨眼和疲劳检测的代码: 首先,需要安装OpenCV、Python和Dlib库。在Python中,可以使用pip安装这些库: ``` pip install opencv-python pip install dlib ``` 接下来,导入必要的库: ```python import cv2 import dlib import numpy as np from scipy.spatial import distance as dist ``` 然后,定义一些常量和函数: ```python EYE_AR_THRESH = 0.25 # 眼睛长宽比阈值 EYE_AR_CONSEC_FRAMES = 3 # 连续帧数 YAWN_THRESH = 20 # 打哈欠阈值 ALARM_SOUND_PATH = "alarm.wav" # 警报声音文件路径 def eye_aspect_ratio(eye): # 计算眼睛长宽比 A = dist.euclidean(eye[1], eye[5]) B = dist.euclidean(eye[2], eye[4]) C = dist.euclidean(eye[0], eye[3]) ear = (A + B) / (2.0 * C) return ear def mouth_aspect_ratio(mouth): # 计算嘴巴长宽比 A = dist.euclidean(mouth[14], mouth[18]) B = dist.euclidean(mouth[12], mouth[16]) C = dist.euclidean(mouth[0], mouth[6]) mar = (A + B) / (2.0 * C) return mar def play_alarm_sound(path): # 播放警报声音 import os os.system("aplay " + path + " &") ``` 现在,让我们加载Dlib的人脸检测器和68个面部标定点模型: ```python detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") ``` 最后,我们可以开始处理视频流或摄像头输入: ```python cap = cv2.VideoCapture(0) # 摄像头输入 ear_history = [] # 眼睛长宽比历史记录 mar_history = [] # 嘴巴长宽比历史记录 alarm_on = False # 是否播放警报声音 while True: ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) rects = detector(gray, 0) for rect in rects: # 检测人脸并标定面部 shape = predictor(gray, rect) shape = np.array([(p.x, p.y) for p in shape.parts()]) # 计算眼睛长宽比和嘴巴长宽比 left_eye = shape[36:42] right_eye = shape[42:48] mouth = shape[48:68] ear = (eye_aspect_ratio(left_eye) + eye_aspect_ratio(right_eye)) / 2.0 mar = mouth_aspect_ratio(mouth) # 在视频中显示眼睛和嘴巴区域 cv2.drawContours(frame, [cv2.convexHull(left_eye)], -1, (0, 255, 0), 1) cv2.drawContours(frame, [cv2.convexHull(right_eye)], -1, (0, 255, 0), 1) cv2.drawContours(frame, [cv2.convexHull(mouth)], -1, (0, 255, 0), 1) # 更新眼睛长宽比历史记录 ear_history.append(ear) if len(ear_history) > EYE_AR_CONSEC_FRAMES: ear_history.pop(0) # 更新嘴巴长宽比历史记录 mar_history.append(mar) if len(mar_history) > EYE_AR_CONSEC_FRAMES: mar_history.pop(0) # 判断是否眨眼和打哈欠 ear_avg = np.mean(ear_history) mar_avg = np.mean(mar_history) if ear_avg < EYE_AR_THRESH and mar_avg > YAWN_THRESH: # 开始播放警报声音 if not alarm_on: alarm_on = True play_alarm_sound(ALARM_SOUND_PATH) else: # 停止播放警报声音 alarm_on = False cv2.imshow("Frame", frame) key = cv2.waitKey(1) if key == 27: break cap.release() cv2.destroyAllWindows() ``` 这段代码中,我们使用OpenCV从摄像头或视频流中读取帧。然后,我们将每个帧转换为灰度图像,并使用Dlib检测人脸和面部标定点。 接下来,我们计算眼睛长宽比和嘴巴长宽比,并绘制出眼睛和嘴巴的轮廓。然后,我们更新眼睛长宽比和嘴巴长宽比历史记录,并检查是否有连续的帧满足眨眼和打哈欠的条件。如果是,我们播放警报声音。 最后,我们在视频中显示帧,并等待按下ESC键退出程序。 希望这个例子可以帮助你开始使用OpenCV、Python和Dlib实现面部标定、眨眼和疲劳检测。
阅读全文

相关推荐

zip
技术选型 【后端】:Java 【框架】:springboot 【前端】:vue 【JDK版本】:JDK1.8 【服务器】:tomcat7+ 【数据库】:mysql 5.7+ 项目包含前后台完整源码。 项目都经过严格调试,确保可以运行! 具体项目介绍可查看博主文章或私聊获取 助力学习实践,提升编程技能,快来获取这份宝贵的资源吧! 在当今快速发展的信息技术领域,技术选型是决定一个项目成功与否的重要因素之一。基于以下的技术栈,我们为您带来了一份完善且经过实践验证的项目资源,让您在学习和提升编程技能的道路上事半功倍。以下是该项目的技术选型和其组件的详细介绍。 在后端技术方面,我们选择了Java作为编程语言。Java以其稳健性、跨平台性和丰富的库支持,在企业级应用中处于领导地位。项目采用了流行的Spring Boot框架,这个框架以简化Java企业级开发而闻名。Spring Boot提供了简洁的配置方式、内置的嵌入式服务器支持以及强大的生态系统,使开发者能够更高效地构建和部署应用。 前端技术方面,我们使用了Vue.js,这是一个用于构建用户界面的渐进式JavaScript框架。Vue以其易上手、灵活和性能出色而受到开发者的青睐,它的组件化开发思想也有助于提高代码的复用性和可维护性。 项目的编译和运行环境选择了JDK 1.8。尽管Java已经推出了更新的版本,但JDK 1.8依旧是一种成熟且稳定的选择,广泛应用于各类项目中,确保了兼容性和稳定性。 在服务器方面,本项目部署在Tomcat 7+之上。Tomcat是Apache软件基金会下的一个开源Servlet容器,也是应用最为广泛的Java Web服务器之一。其稳定性和可靠的性能表现为Java Web应用提供了坚实的支持。 数据库方面,我们采用了MySQL 5.7+。MySQL是一种高效、可靠且使用广泛的关系型数据库管理系统,5.7版本在性能和功能上都有显著的提升。 值得一提的是,该项目包含了前后台的完整源码,并经过严格调试,确保可以顺利运行。通过项目的学习和实践,您将能更好地掌握从后端到前端的完整开发流程,提升自己的编程技能。欢迎参考博主的详细文章或私信获取更多信息,利用这一宝贵资源来推进您的技术成长之路!

最新推荐

recommend-type

opencv+python实现均值滤波

本文将深入探讨如何使用OpenCV和Python实现均值滤波,并通过具体的代码示例展示其实现过程。 均值滤波的原理是通过对目标像素及其邻近像素求平均值,然后用这个平均值替换目标像素的原始值。这种滤波方法适用于去除...
recommend-type

Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

在本文中,我们将深入探讨如何使用Python结合Dlib和OpenCV库实现人脸采集与表情判别功能。首先,我们需要确保正确安装这三个库。Dlib是一个强大的C++工具包,提供了机器学习算法,其中包括用于人脸检测和特征定位的...
recommend-type

opencv+python实现鼠标点击图像,输出该点的RGB和HSV值

总的来说,这段代码及其补充知识向我们展示了如何结合OpenCV和Python实现交互式的图像处理,以及如何在RGB和HSV两种颜色空间之间进行转换,这对于进行颜色相关的图像分析非常有用。通过这种方式,开发者可以更直观地...
recommend-type

OpenCV+Python–RGB转HSI的实现

这段Python代码首先通过`cv2.split()`函数将输入的RGB图像分解为BGR三个通道,然后将每个通道的像素值归一化到0到1的范围。接下来,通过计算和三角函数来求解色调H、饱和度S和亮度I。 计算H的步骤是找到RGB三通道的...
recommend-type

python+opencv轮廓检测代码解析

总的来说,Python和OpenCV提供的这些工具使得轮廓检测变得相对简单。通过上述步骤,我们可以对图像进行基本处理,提取出其中的轮廓,这对于后续的形状分析、物体识别等任务有着极大的帮助。如果你对此感兴趣,还可以...
recommend-type

黑板风格计算机毕业答辩PPT模板下载

资源摘要信息:"创意经典黑板风格毕业答辩论文课题报告动态ppt模板" 在当前数字化教学与展示需求日益增长的背景下,PPT模板成为了表达和呈现学术成果及教学内容的重要工具。特别针对计算机专业的学生而言,毕业设计的答辩PPT不仅仅是一个展示的平台,更是其设计能力、逻辑思维和审美观的综合体现。因此,一个恰当且创意十足的PPT模板显得尤为重要。 本资源名为“创意经典黑板风格毕业答辩论文课题报告动态ppt模板”,这表明该模板具有以下特点: 1. **创意设计**:模板采用了“黑板风格”的设计元素,这种风格通常模拟传统的黑板书写效果,能够营造一种亲近、随性的学术氛围。该风格的模板能够帮助展示者更容易地吸引观众的注意力,并引发共鸣。 2. **适应性强**:标题表明这是一个毕业答辩用的模板,它适用于计算机专业及其他相关专业的学生用于毕业设计课题的汇报。模板中设计的版式和内容布局应该是灵活多变的,以适应不同课题的展示需求。 3. **动态效果**:动态效果能够使演示内容更富吸引力,模板可能包含了多种动态过渡效果、动画效果等,使得展示过程生动且充满趣味性,有助于突出重点并维持观众的兴趣。 4. **专业性质**:由于是毕业设计用的模板,因此该模板在设计时应充分考虑了计算机专业的特点,可能包括相关的图表、代码展示、流程图、数据可视化等元素,以帮助学生更好地展示其研究成果和技术细节。 5. **易于编辑**:一个良好的模板应具备易于编辑的特性,这样使用者才能根据自己的需要进行调整,比如替换文本、修改颜色主题、更改图片和图表等,以确保最终展示的个性和专业性。 结合以上特点,模板的使用场景可以包括但不限于以下几种: - 计算机科学与技术专业的学生毕业设计汇报。 - 计算机工程与应用专业的学生论文展示。 - 软件工程或信息技术专业的学生课题研究成果展示。 - 任何需要进行学术成果汇报的场合,比如研讨会议、学术交流会等。 对于计算机专业的学生来说,毕业设计不仅仅是完成一个课题,更重要的是通过这个过程学会如何系统地整理和表述自己的思想。因此,一份好的PPT模板能够帮助他们更好地完成这个任务,同时也能够展现出他们的专业素养和对细节的关注。 此外,考虑到模板是一个压缩文件包(.zip格式),用户在使用前需要解压缩,解压缩后得到的文件为“创意经典黑板风格毕业答辩论文课题报告动态ppt模板.pptx”,这是一个可以直接在PowerPoint软件中打开和编辑的演示文稿文件。用户可以根据自己的具体需要,在模板的基础上进行修改和补充,以制作出一个具有个性化特色的毕业设计答辩PPT。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

提升点阵式液晶显示屏效率技术

![点阵式液晶显示屏显示程序设计](https://iot-book.github.io/23_%E5%8F%AF%E8%A7%81%E5%85%89%E6%84%9F%E7%9F%A5/S3_%E8%A2%AB%E5%8A%A8%E5%BC%8F/fig/%E8%A2%AB%E5%8A%A8%E6%A0%87%E7%AD%BE.png) # 1. 点阵式液晶显示屏基础与效率挑战 在现代信息技术的浪潮中,点阵式液晶显示屏作为核心显示技术之一,已被广泛应用于从智能手机到工业控制等多个领域。本章节将介绍点阵式液晶显示屏的基础知识,并探讨其在提升显示效率过程中面临的挑战。 ## 1.1 点阵式显
recommend-type

在SoC芯片的射频测试中,ATE设备通常如何执行系统级测试以保证芯片量产的质量和性能一致?

SoC芯片的射频测试是确保无线通信设备性能的关键环节。为了在量产阶段保证芯片的质量和性能一致性,ATE(Automatic Test Equipment)设备通常会执行一系列系统级测试。这些测试不仅关注芯片的电气参数,还包含电磁兼容性和射频信号的完整性检验。在ATE测试中,会根据芯片设计的规格要求,编写定制化的测试脚本,这些脚本能够模拟真实的无线通信环境,检验芯片的射频部分是否能够准确处理信号。系统级测试涉及对芯片基带算法的验证,确保其能够有效执行无线信号的调制解调。测试过程中,ATE设备会自动采集数据并分析结果,对于不符合标准的芯片,系统能够自动标记或剔除,从而提高测试效率和减少故障率。为了
recommend-type

CodeSandbox实现ListView快速创建指南

资源摘要信息:"listview:用CodeSandbox创建" 知识点一:CodeSandbox介绍 CodeSandbox是一个在线代码编辑器,专门为网页应用和组件的快速开发而设计。它允许用户即时预览代码更改的效果,并支持多种前端开发技术栈,如React、Vue、Angular等。CodeSandbox的特点是易于使用,支持团队协作,以及能够直接在浏览器中编写代码,无需安装任何软件。因此,它非常适合初学者和快速原型开发。 知识点二:ListView组件 ListView是一种常用的用户界面组件,主要用于以列表形式展示一系列的信息项。在前端开发中,ListView经常用于展示从数据库或API获取的数据。其核心作用是提供清晰的、结构化的信息展示方式,以便用户可以方便地浏览和查找相关信息。 知识点三:用JavaScript创建ListView 在JavaScript中创建ListView通常涉及以下几个步骤: 1. 创建HTML的ul元素作为列表容器。 2. 使用JavaScript的DOM操作方法(如document.createElement, appendChild等)动态创建列表项(li元素)。 3. 将创建的列表项添加到ul容器中。 4. 通过CSS来设置列表和列表项的样式,使其符合设计要求。 5. (可选)为ListView添加交互功能,如点击事件处理,以实现更丰富的用户体验。 知识点四:在CodeSandbox中创建ListView 在CodeSandbox中创建ListView可以简化开发流程,因为它提供了一个在线环境来编写代码,并且支持实时预览。以下是使用CodeSandbox创建ListView的简要步骤: 1. 打开CodeSandbox官网,创建一个新的项目。 2. 在项目中创建或编辑HTML文件,添加用于展示ListView的ul元素。 3. 创建或编辑JavaScript文件,编写代码动态生成列表项,并将它们添加到ul容器中。 4. 使用CodeSandbox提供的实时预览功能,即时查看ListView的效果。 5. 若有需要,继续编辑或添加样式文件(通常是CSS),对ListView进行美化。 6. 利用CodeSandbox的版本控制功能,保存工作进度和团队协作。 知识点五:实践案例分析——listview-main 文件名"listview-main"暗示这可能是一个展示如何使用CodeSandbox创建基本ListView的项目。在这个项目中,开发者可能会包含以下内容: 1. 使用React框架创建ListView的示例代码,因为React是目前较为流行的前端库。 2. 展示如何将从API获取的数据渲染到ListView中,包括数据的获取、处理和展示。 3. 提供基本的样式设置,展示如何使用CSS来美化ListView。 4. 介绍如何在CodeSandbox中组织项目结构,例如如何分离组件、样式和脚本文件。 5. 包含一个简单的用户交互示例,例如点击列表项时弹出详细信息等。 总结来说,通过标题“listview:用CodeSandbox创建”,我们了解到本资源是一个关于如何利用CodeSandbox这个在线开发环境,来快速实现一个基于JavaScript的ListView组件的教程或示例项目。通过上述知识点的梳理,可以加深对如何创建ListView组件、CodeSandbox平台的使用方法以及如何在该平台中实现具体功能的理解。