写一段代码使用LSTM根据风速、风向、湿度、温度、气压和空气密度数据对风电场输出功率进行预测
时间: 2023-10-20 09:25:28 浏览: 129
好的,以下是使用LSTM对风电场输出功率进行预测的代码:
```python
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM
# 读取数据集
dataset = pd.read_csv('data.csv', header=0, index_col=0)
dataset = dataset.dropna() # 删除空值行
# 划分训练集和测试集
train_size = int(len(dataset) * 0.8)
train, test = dataset.iloc[:train_size,:], dataset.iloc[train_size:,:]
# 标准化数据
mean = train.mean(axis=0)
std = train.std(axis=0)
train = (train - mean) / std
test = (test - mean) / std
# 将数据转换为LSTM输入格式
def create_dataset(X, look_back=1):
dataX, dataY = [], []
for i in range(len(X)-look_back-1):
a = X[i:(i+look_back), :]
dataX.append(a)
dataY.append(X[i + look_back, 0])
return np.array(dataX), np.array(dataY)
look_back = 10 # 时间步长
trainX, trainY = create_dataset(train.values, look_back)
testX, testY = create_dataset(test.values, look_back)
# 创建LSTM模型并训练
model = Sequential()
model.add(LSTM(units=50, input_shape=(look_back, 6)))
model.add(Dropout(0.2))
model.add(Dense(units=1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=32)
# 在测试集上进行预测
y_pred = model.predict(testX)
y_pred = y_pred.reshape(y_pred.shape[0])
y_pred = (y_pred * std[0]) + mean[0] # 还原数据
# 计算均方根误差
rmse = np.sqrt(np.mean((y_pred - testY)**2))
print('RMSE:', rmse)
```
请注意,此处的数据集需要包含风速、风向、湿度、温度、气压和空气密度数据以及相应的输出功率数据。在设置LSTM模型时,我们使用了50个LSTM单元,并添加了20%的dropout来避免过拟合。最后,我们计算了在测试集上的均方根误差(RMSE)来评估模型的性能。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)