vec_el = np.pi / 2.2 # 光源的俯视角度,弧度值 vec_az = np.pi / 4 # 光源的方位角度,弧度值 dx = np.cos(vec_el) * np.cos(vec_az) # 光源对 x 轴的影响 dy = np.cos(vec_el) * np.sin(vec_az) # 光源对 y 轴的影响 dz = np.sin(vec_el) # 光源对 z 轴的影响

时间: 2023-12-29 22:06:18 浏览: 45
这段代码定义了一个三维坐标系中的光源方向,其中`vec_el`表示光源的俯视角度,`vec_az`表示光源的方位角度。通过计算出光源对三个轴方向的影响,可以确定在该光照条件下,物体表面每个点的亮度值。具体而言,`dx`表示光线在x轴方向上的投影,`dy`表示光线在y轴方向上的投影,`dz`表示光线在z轴方向上的投影,这三个值可以用来计算出光源照射到物体表面某个点的亮度。
相关问题

def gray(content_dir,content_gray): a = np.asarray(Image.open(content_dir).convert('L')).astype('float') depath = 10 # (0-100) grad = np.gradient(a) # 取图像灰度的梯度值 grad_x, grad_y = grad # 分别取横纵图像梯度值 grad_x = grad_x * depath / 100. grad_y = grad_y * depath / 100. A = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.) uni_x = grad_x / A uni_y = grad_y / A uni_z = 1. / A vec_el = np.pi / 2.2 # 光源的俯视角度,弧度值 vec_az = np.pi / 4 # 光源的方位角度,弧度值 dx = np.cos(vec_el) * np.cos(vec_az) # 光源对 x 轴的影响 dy = np.cos(vec_el) * np.sin(vec_az) # 光源对 y 轴的影响 dz = np.sin(vec_el) # 光源对 z 轴的影响 b = 255 * (dx * uni_x + dy * uni_y + dz * uni_z) # 光源归一化 b = b.clip(0, 255) im = Image.fromarray(b.astype('uint8')) # 重构图像 im.save(content_gray) return

这是一个Python函数,用于将一张彩色图片转换为灰度图并进行光照处理。具体实现过程如下: 1. 使用PIL库中的Image.open()打开彩色图片,并使用convert()方法将其转换为灰度图。 2. 定义一个参数depath,表示光照强度的深浅程度。 3. 使用numpy库中的gradient()方法获取图像的梯度值,分别表示横向和纵向的梯度值。 4. 将梯度值乘以光照强度,得到光照后的梯度值。 5. 计算每个像素点的法向量,并将其归一化。 6. 定义光源的俯视角度和方位角度,计算光源对每个像素点的影响。 7. 将光源归一化后的影响值与原始像素值相乘,得到光照后的像素值。 8. 将像素值限制在0-255之间,避免出现超出像素值范围的情况。 9. 将光照后的像素值重新构建成一张图片,并保存到指定路径。 10. 最后返回保存路径。

帮我分析一下python程序代码from PIL import Image import numpy as np a = (np.array(Image.open("C:/picture/1.jpg").convert('L')).astype('float')) depth = 3. grad = np.gradient(a) grad_x, grad_y = grad grad_x = grad_xdepth/100. grad_y = grad_ydepth/100. A = np.sqrt(grad_x2 + grad_y2 + 1.) uni_x = grad_x/A uni_y = grad_y/A uni_z = 1./A vec_el = np.pi/2.2 vec_az = np.pi/4. dx = np.cos(vec_el)np.cos(vec_az) dy = np.cos(vec_el)np.sin(vec_az) dz = np.sin(vec_el) b = 255(dxuni_x + dyuni_y + dzuni_z) b = b.clip(0, 255) im = Image.fromarray(b.astype('uint8')) im.save("C:/picture/5.jpg")

这段 Python 代码是对一张灰度图像进行处理,生成一张类似于高度图的图片,用于表示图像中每个像素点的深度信息。具体来说,这段代码实现了以下功能: 1. 导入 PIL 库和 numpy 库。 2. 使用 PIL 库中的 Image.open() 方法打开一张图片,并使用 convert() 方法将其转换为灰度图像,最后使用 astype() 方法将其转换为浮点数类型的数组 a。 3. 使用 numpy.gradient() 方法计算图像数组 a 中每个像素点在 x 轴和 y 轴方向上的梯度,返回两个数组 grad_x 和 grad_y。 4. 将 grad_x 和 grad_y 每个元素都乘以一个系数 depth/100,并使用 numpy.sqrt() 方法计算 grad_x^2 + grad_y^2 + 1 的平方根,最终得到一个新的数组 A。 5. 根据 uni_x = grad_x/A,uni_y = grad_y/A 和 uni_z = 1./A 计算每个像素点的法向量。 6. 根据 vec_el 和 vec_az 计算光源的方向向量 (dx, dy, dz)。 7. 根据 b = 255(dxuni_x + dyuni_y + dzuni_z) 计算每个像素点的深度值。 8. 将深度值限制在 0 到 255 之间,并使用 Image.fromarray() 方法将其转换为图像,并使用 save() 方法保存到指定路径。 总的来说,这段代码的主要作用是将一张灰度图像转换为高度图像,用于表示图像中每个像素点的深度信息。

相关推荐

优化这段import numpy as np import matplotlib.pyplot as plt %config InlineBackend.figure_format='retina' # 输入信号 def inputVoltageSignal_func(t_vec, A, phi, noise, freq): Omega = 2np.pifreq return Anp.sin(Omegat_vec + phi) + noise * (2np.random.random(t_vec.size)-1) # 锁相测量部分 def LockinMeasurement_func(inputVoltageSignal, t_vec, ref_freq): # 生成参考信号 sin_ref = 2np.sin(2 * np.pi * ref_freq * t_vec) cos_ref = 2*np.cos(2 * np.pi * ref_freq * t_vec) # 混频信号 signal_0 = inputVoltageSignal * sin_ref signal_1 = inputVoltageSignal * cos_ref # 低通滤波 X = np.mean(signal_0) Y = np.mean(signal_1) # 计算振幅和相位 A = np.sqrt(X2 + Y2) phi = np.arctan2(Y, X) return A, phi # 参数 A = 1 phi = 0 noise = 1 ref_freq = 100 t_vec = np.linspace(0, 0.2, 1001) # 列表来保存幅值和相位数据 amplitude_list = [] phase_list = [] freq_list = np.arange(1, 1001) # 循环计算不同频率下的幅值和相位 for freq in freq_list: # 生成原始信号 Vin_vec = inputVoltageSignal_func(t_vec, A, phi, noise, freq=freq) # 锁相测量 A, phi = LockinMeasurement_func(Vin_vec, t_vec, ref_freq=freq) # 保存幅值和相位数据 amplitude_list.append(A) phase_list.append(phi) #绘图 # 幅值与频率的关系图 plt.figure(figsize=(10, 6)) plt.subplot(2,1,1) plt.plot(freq_list, amplitude_list) plt.xlabel('freq (Hz)') plt.ylabel('A') plt.title('relationship between A and freq') plt.show() # 相位与频率的关系图 plt.figure(figsize=(10, 6)) plt.subplot(2,1,2) plt.plot(freq_list, phase_list) plt.xlabel('freq (Hz)') plt.ylabel('Phi') plt.title('relationship between Phi and freq') plt.show()使用while循环

优化这段pythonimport numpy as np import matplotlib.pyplot as plt import math # 待测信号 freq = 17.77777 # 信号频率 t = np.linspace(0, 0.2, 1001) Omega =2 * np.pi * freq phi = np.pi A=1 x = A * np.sin(Omega * t + phi) # 加入噪声 noise = 0.2 * np.random.randn(len(t)) x_noise = x + noise # 参考信号 ref0_freq = 17.77777 # 参考信号频率 ref0_Omega =2 * np.pi * ref0_freq ref_0 = 2np.sin(ref0_Omega * t) # 参考信号90°相移信号 ref1_freq = 17.77777 # 参考信号频率 ref1_Omega =2 * np.pi * ref1_freq ref_1 = 2np.cos(ref1_Omega * t) # 混频信号 signal_0 = x_noise * ref_0 signal_1 = x_noise * ref_1 # 绘图 plt.figure(figsize=(13,4)) plt.subplot(2,3,1) plt.plot(t, x_noise) plt.title('input signal', fontsize=13) plt.subplot(2,3,2) plt.plot(t, ref_0) plt.title('reference signal', fontsize=13) plt.subplot(2,3,3) plt.plot(t, ref_1) plt.title('phase-shifted by 90°', fontsize=13) plt.subplot(2,3,4) plt.plot(t, signal_0) plt.title('mixed signal_1', fontsize=13) plt.subplot(2,3,5) plt.plot(t, signal_1) plt.title('mixed signal_2', fontsize=13) plt.tight_layout() # 计算平均值 X = np.mean(signal_0) Y = np.mean(signal_1) print("X=",X) print("Y=",Y) # 计算振幅和相位 X_square =X2 Y_square =Y2 sum_of_squares = X_square + Y_square result = np.sqrt(sum_of_squares) Theta = np.arctan2(Y, X) print("R=", result) print("Theta=", Theta),把输入信号部分整理成函数:输入参数为t_vec,A,phi,noise;锁相测量部分也整理成代码,输入待测周期信号,以及频率freq,输出为A,phi,不用绘图

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

MobaXterm 工具

MobaXterm 工具
recommend-type

grpcio-1.48.0-cp37-cp37m-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB取整函数与Web开发的作用:round、fix、floor、ceil在Web开发中的应用

![MATLAB取整函数与Web开发的作用:round、fix、floor、ceil在Web开发中的应用](https://img-blog.csdnimg.cn/2020050917173284.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2thbmdqaWVsZWFybmluZw==,size_16,color_FFFFFF,t_70) # 1. MATLAB取整函数概述** MATLAB取整函数是一组强大的工具,用于对数值进行
recommend-type

我想做python的算法工程师,我应该学什么?学习的顺序是什么?网上有什么推荐的免费课程吗?回答具体精确一点不要太笼统

对于想要成为 Python 算法工程师的人来说,他们应该先从掌握 Python 的基础语法开始,然后学习数据结构和算法,并且要深入了解 Python 中的一些科学计算和数据处理库,比如 NumPy、Pandas 等。 学习的顺序可以是先学习基础语法和编程技巧,然后再学习数据结构和算法相关的知识,最后深入了解数据处理和科学计算相关的库。 对于免费课程的推荐,我建议你可以先去 Coursera、edX、Udacity 等网站上寻找相关课程,这些网站上有很多优质的 Python 编程和算法课程,你可以根据自己的需求和学习进度进行选择。此外,还可以考虑一些在线编程网站,如 HackerRank、L
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依