python
时间: 2023-06-22 20:28:54 浏览: 78
好的,那我们可以使用 Python 的 PIL 库(Pillow 库的前身)来实现这个功能。下面是具体的代码实现:
```python
from PIL import Image
import numpy as np
def energy_map(img):
# 计算每个像素的能量值
gray_img = img.convert('L')
img_arr = np.array(gray_img, dtype=np.float32)
gx, gy = np.gradient(img_arr)
energy_map = np.sqrt(gx ** 2 + gy ** 2)
return energy_map
def find_seam(energy_map):
# 找到能量最小的一条缝隙
h, w = energy_map.shape
dp = np.zeros((h, w))
dp[0] = energy_map[0]
for i in range(1, h):
for j in range(w):
if j == 0:
dp[i, j] = energy_map[i, j] + min(dp[i-1, j], dp[i-1, j+1])
elif j == w-1:
dp[i, j] = energy_map[i, j] + min(dp[i-1, j-1], dp[i-1, j])
else:
dp[i, j] = energy_map[i, j] + min(dp[i-1, j-1], dp[i-1, j], dp[i-1, j+1])
seam = []
j = np.argmin(dp[-1])
for i in range(h-1, -1, -1):
seam.append((i, j))
if j == 0:
j = np.argmin(dp[i-1, j:j+2])
elif j == w-1:
j = np.argmin(dp[i-1, j-1:j+1]) + j - 1
else:
j = np.argmin(dp[i-1, j-1:j+2]) + j - 1
return seam
def remove_seam(img, seam):
# 移除一条缝隙
h, w = img.size
new_img = Image.new('RGB', (w-1, h))
for i, j in seam:
for k in range(j, w-1):
img.putpixel((k, i), img.getpixel((k+1, i)))
for i in range(h):
for j in range(w-1):
new_img.putpixel((j, i), img.getpixel((j, i)))
return new_img
def seam_carving(img_path, new_width):
# 缩小图片
img = Image.open(img_path)
w, h = img.size
if new_width >= w:
return img
for _ in range(w-new_width):
energy_map_ = energy_map(img)
seam = find_seam(energy_map_)
img = remove_seam(img, seam)
return img
def bilinear_interpolation(img, new_size):
# 双线性插值恢复图片大小
w, h = img.size
new_w, new_h = new_size
new_img = Image.new('RGB', new_size)
for i in range(new_h):
for j in range(new_w):
x = j / (new_w-1) * (w-1)
y = i / (new_h-1) * (h-1)
x1, y1 = int(x), int(y)
x2, y2 = min(x1+1, w-1), min(y1+1, h-1)
dx, dy = x - x1, y - y1
r1, g1, b1 = img.getpixel((x1, y1))
r2, g2, b2 = img.getpixel((x2, y1))
r3, g3, b3 = img.getpixel((x1, y2))
r4, g4, b4 = img.getpixel((x2, y2))
r = int(r1*(1-dx)*(1-dy) + r2*dx*(1-dy) + r3*(1-dx)*dy + r4*dx*dy)
g = int(g1*(1-dx)*(1-dy) + g2*dx*(1-dy) + g3*(1-dx)*dy + g4*dx*dy)
b = int(b1*(1-dx)*(1-dy) + b2*dx*(1-dy) + b3*(1-dx)*dy + b4*dx*dy)
new_img.putpixel((j, i), (r, g, b))
return new_img
if __name__ == '__main__':
img_path = 'test.jpg'
new_width = 300
new_size = (800, 600)
img = seam_carving(img_path, new_width)
img.save('resized.jpg')
img = bilinear_interpolation(img, new_size)
img.save('resized_interpolated.jpg')
```
在上面的代码中,`seam_carving` 函数用于将图片缩小到指定的宽度,`bilinear_interpolation` 函数用于将缩小后的图片恢复到指定的大小。你可以将 `img_path` 变量指定为输入的图片路径,`new_width` 变量指定为缩小后的宽度,`new_size` 变量指定为恢复后的大小。程序会生成两张图片,分别为缩小后的图片和恢复后的图片。
阅读全文