void qSlicerArielImplantPlanModuleWidgetPrivate::updateStemCutPlane() { Q_Q(qSlicerArielImplantPlanModuleWidget); if (curStemInfo.brand.empty() || curStemInfo.type.empty()) return; vtkNew<vtkMatrix4x4> stemPoseMatrix; stemPoseNode->GetMatrixTransformToParent(stemPoseMatrix); // 活动评估下 if (currentMode == qSlicerArielImplantPlanModuleWidgetPrivate::CollisionDetect) if (::isPoseValid(this->stemPoseMatrixRaw)) { stemPoseMatrix->DeepCopy(this->stemPoseMatrixRaw); } vtkNew<vtkMatrix4x4> identity; if (areMatricesEqual(stemPoseMatrix, identity)) return; double stemInfo[4]; stemInfo[0] = curStemInfo.neckLength; stemInfo[1] = curStemInfo.horizontalOffset; stemInfo[2] = curStemInfo.neckShaftAngle; stemInfo[3] = curStemInfo.cutAngle; // transform double origin[3], normal[3]; currentModuleLogic->getCutFemurPlaneOriginAndNormal(stemInfo, origin, normal); vtkNew<vtkPlane> stemCutPlane; currentModuleLogic->getTransformedPlane(origin, normal, stemPoseMatrix, stemCutPlane); stemCutPlane->GetOrigin(origin); stemCutPlane->GetNormal(normal); // Plane if (stemCutPlane && this->stemCutPlane) { std::cout << __FUNCTION__ << std::endl; //股骨柄切面高度 auto stemHeight = q->calculateCutFemurHeight(origin, normal); std::cout << u8"股骨柄切面高度:height=" << stemHeight << std::endl; //当前截骨面高度 auto distance = q->calculateCutFemurHeight(); std::cout << u8"矫正前截骨面高度:distance=" << distance << std::endl; //偏移=实际-理论 std::cout << u8"截骨偏移: cutPlaneOffset=" << cutPlaneOffset << std::endl; //高度or法向量 不相等:调节 if ((stemHeight + cutPlaneOffset) != distance) { //重置PlaneNode double newOrigin[3] = {0}; double newNormal[3] = {0}; memcpy(newNormal, normal, sizeof(double) * 3); if (cutPlaneOffset == 0.0) memcpy(newOrigin, origin, sizeof(double) * 3); else currentModuleLogic->calculatePositionOfCutPlaneByOffset(origin, normal, cutPlaneOffset, newOrigin); this->stemCutPlane->setPlaneNodeByPlaneType( PlaneType( {newNormal[0], newNormal[1], newNormal[2], newOrigin[0], newOrigin[1], newOrigin[2]}), this->cutPlaneRadius); //重置高度 q->resetCutFemurHeightSpinBoxValue(); //重新获取offset distance = q->calculateCutFemurHeight(); std::cout << u8"矫正后截骨面高度:distance=" << distance << ", stemHeight=" << stemHeight << std::endl; } } }

时间: 2023-02-09 08:52:46 浏览: 90
这段代码看起来是在更新一个叫做"stemCutPlane"的切割平面。首先,它检查当前模块是否处于"CollisionDetect"模式,如果是,它会把"stemPoseMatrix"的值设置为"stemPoseMatrixRaw"。然后,它使用当前的"stemInfo"数组来获取平面的原点和法向量,并使用"stemPoseMatrix"对平面进行变换。最后,它获取变换后平面的原点和法向量。
相关问题

下面这段代码的作用是什么void EKFLocalizer::setCurrentResult() { current_ekf_pose_.header.frame_id = pose_frame_id_; current_ekf_pose_.header.stamp = ros::Time::now(); current_ekf_pose_.pose.position.x = ekf_.getXelement(IDX::X); current_ekf_pose_.pose.position.y = ekf_.getXelement(IDX::Y); tf2::Quaternion q_tf; //四元数 double roll, pitch, yaw; if (current_pose_ptr_ != nullptr) { current_ekf_pose_.pose.position.z = current_pose_ptr_->pose.position.z; tf2::fromMsg(current_pose_ptr_->pose.orientation, q_tf); /* use Pose pitch and roll */ tf2::Matrix3x3(q_tf).getRPY(roll, pitch, yaw); } else { current_ekf_pose_.pose.position.z = 0.0; roll = 0; pitch = 0; } yaw = ekf_.getXelement(IDX::YAW) + ekf_.getXelement(IDX::YAWB); q_tf.setRPY(roll, pitch, yaw); tf2::convert(q_tf, current_ekf_pose_.pose.orientation); current_ekf_twist_.header.frame_id = "base_link"; current_ekf_twist_.header.stamp = ros::Time::now(); current_ekf_twist_.twist.linear.x = ekf_.getXelement(IDX::VX); current_ekf_twist_.twist.angular.z = ekf_.getXelement(IDX::WZ); }

这段代码的作用是将当前的 EKF 定位结果存储到 current_ekf_pose_ 和 current_ekf_twist_ 变量中,其中包括位置、姿态、线速度和角速度等信息。具体实现过程中,通过获取 EKF 算法中的状态量,以及当前机器人的姿态信息,计算出当前机器人的位置和姿态,并将其存储到变量中。同时,也将机器人的线速度和角速度存储到 current_ekf_twist_ 变量中。

Error: Class declaration lacks Q_OBJECT macro.

这个错误通常是因为在Qt的类中使用了信号和槽机制,但是没有在类的声明中添加Q_OBJECT宏,这个宏是Qt的元对象系统必须的,用于生成类的元对象代码。 要解决这个问题,只需要在你的类的声明中添加Q_OBJECT宏即可,例如: ```c++ class MyClass : public QObject { Q_OBJECT public: // ... signals: void mySignal(); public slots: void mySlot(); }; ``` 添加Q_OBJECT宏后,再重新编译你的代码,这个错误就应该会消失了。

相关推荐

void SetPACLKADT() { uint8_t carmode = CTripComputerProxy::intance().Get_Signals_VehModMngtGlbSafe1CarModSts1(); uint8_t usagemode = CTripComputerProxy::intance().Get_Signals_VehModMngtGlbSafe1UsgModSts(); mNowTime.m_Year = CTripComputerProxy::intance().Get_Signals_TiAndDateIndcnYr1(); mNowTime.m_Month = CTripComputerProxy::intance().Get_Signals_TiAndDateIndcnMth1(); mNowTime.m_Day = CTripComputerProxy::intance().Get_Signals_TiAndDateIndcnDay(); mNowTime.m_Hour = CTripComputerProxy::intance().Get_Signals_TiAndDateIndcnHr1(); mNowTime.m_Min = CTripComputerProxy::intance().Get_Signals_TiAndDateIndcnMins1(); mNowTime.m_Sec = CTripComputerProxy::intance().Get_Signals_TiAndDateIndcnSec1(); uint8_t mValid = CTripComputerProxy::intance().Get_Signals_TiAndDateIndcnDataValid(); if (((carmode == Time_Normal) || (carmode == Time_Crash) || (carmode == Time_Dynamometer)) && \ ((usagemode == Time_InActv) || (usagemode == Time_Cnvinc) || (usagemode == Time_Actv) || (usagemode == Time_Drvg))) { tmp.mAvailability = Active; } else { tmp.mAvailability = NotActive; } if (0 != hmi_CompareObj(tmp, mCLKADT)) { mCLKADT = tmp; hmi_info("mCLKADT.mFormat : %d ,mCLKADT.mAvailability : %d", mCLKADT.mFormat, mCLKADT.mAvailability); CDbusConnect::intance().sendSignal(XE_interface_Digital, XE_member_Clock_Date, mCLKADT); if (mValid == 1u) { if(0 != hmi_CompareObj(mNowTime, mNowTime_Pre)) { SetSystemTime(mNowTime.m_Year + 2000u, mNowTime.m_Month, mNowTime.m_Day, mNowTime.m_Hour, mNowTime.m_Min, mNowTime.m_Sec); HMI_MEMCPY(&mNowTime_Pre, &mNowTime, sizeof(mNowTime)); } } else { //user the time of internal } } else { if(mValid == 1u) { if(0 != hmi_CompareObj(mNowTime, mNowTime_Pre)) { Compare_signal_time_and_local_time(); HMI_MEMCPY(&mNowTime_Pre, &mNowTime, sizeof(mNowTime)); } } else { } } }

monitoring_point.h头文件内容如下: #ifndef MONITORING_POINT_H #define MONITORING_POINT_H #endif // MONITORING_POINT_H #include<QString> #include"monitoring_sensor.h" using namespace std; class Monitoring_point { private: QString JCD_Name;//监测点名称 QString JCD_Type;//监测点所检测的数据类型 QString JCD_Number;//监测点编号 public: Monitoring_sensor sensor;//监测点有传感器 void set_JCD_Name(QString n); void set_JCD_Type(QString t); void set_JCD_Number(QString n); QString get_JCD_Name(); QString get_JCD_Type(); QString get_JCD_Number(); }; monitoring_point.cpp源文件内容如下: #include"monitoring_point.h" #include"mainwindow.h" using namespace std; void Monitoring_point::set_JCD_Name(QString n) { JCD_Name = n; } void Monitoring_point::set_JCD_Type(QString t) { JCD_Type = t; } void Monitoring_point::set_JCD_Number(QString n) { JCD_Number = n; } QString Monitoring_point::get_JCD_Name() { return JCD_Name; } QString Monitoring_point::get_JCD_Type() { return JCD_Type; } QString Monitoring_point::get_JCD_Number() { return JCD_Number; } monitoring_sensor.h头文件内容如下: #ifndef MONITORING_SENSOR_H #define MONITORING_SENSOR_H #endif // MONITORING_SENSOR_H #include<QString> using namespace std; class Monitoring_sensor { private: QString CGQ_Number;//传感器编号 QString CGQ_State;//传感器状态 QString CGQ_Manufacturer;//生产商 QString CGQ_Outnumber;//出厂号 public: void set_CGQ_Number(QString n); QString get_CGQ_Number(); void set_CGQ_State(QString s); QString get_CGQ_State(); void set_CGQ_Manufacturer(QString m); QString get_CGQ_Manufacturer(); void set_CGQ_Outnumber(QString o); QString get_CGQ_Outnumber(); }; monitoring_sensor.cpp源文件内容如下: #include "monitoring_sensor.h" #include"mainwindow.h" using namespace std; void Monitoring_sensor::set_CGQ_Number(QString n) { CGQ_Number=n; } QString Monitoring_sensor::get_CGQ_Number() { return CGQ_Number; } void Monitoring_sensor::set_CGQ_State(QString s) { CGQ_State = s; } QString Monitoring_sensor::get_CGQ_State() { return CGQ_State; } void Monitoring_sensor::set_CGQ_Manufacturer(QString m) { CGQ_Manufacturer = m; } QString Monitoring_sensor::get_CGQ_Manufacturer() { return CGQ_Manufacturer; } void Monitoring_sensor::set_CGQ_Outnumber(QString o) { CGQ_Outnumber=o; } QString Monitoring_sensor::get_CGQ_Outnumber() { return CGQ_Outnumber; } 为什么报错E:\qiaoliangjiance\monitoring_sensor.h:8: error: redefinition of 'class Monitoring_sensor' class Monitoring_sensor ^~~~~~~~~~~~~~~~~

最新推荐

recommend-type

使用c++编写和使用.so动态链接库

void foobar(int i); #endif /* __MY_LIB_H__ */  实现文件mylib.c   #include #include "mylib.h" void foobar(int i) { printf("Printing from myli
recommend-type

MingW VC 之.a .lib .dll .def 关系

void EXPORT printhello(char *str) { cout ; } 3. mylib.h #define EXPORT __declspec(dllexport) extern "C" { void EXPORT printhello(char *str); } 关于DLL的定义和使用: 1. 需要外部调用的函数,定义的...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。