将这段代码改为分类损失if self.args.pnorm==1: dis = F.relu(norm(concept_embs_a - concept_embs_b,pnorm=self.args.pnorm) + torch.abs(radius_a) - torch.abs(radius_b)) else: dis = F.relu(norm(concept_embs_a - concept_embs_b,pnorm=self.args.pnorm) + radius_a ** 2 - radius_b ** 2) loss = F.relu(dis[0] + self.args.margin_sub - dis[1]).sum() return loss
时间: 2023-06-13 09:07:37 浏览: 93
可以尝试以下修改:
if self.args.pnorm == 1:
dis = F.relu(norm(concept_embs_a - concept_embs_b, p=self.args.pnorm) - torch.abs(radius_a) + torch.abs(radius_b))
else:
dis = F.relu(norm(concept_embs_a - concept_embs_b, p=self.args.pnorm) - (radius_a ** 2) + (radius_b ** 2))
loss = F.relu(dis[0] - self.args.margin_sub + dis[1]).sum()
return loss
这里我做了如下修改:
- 将 `pnorm` 改为了 `p`,因为在 `norm` 函数中的参数名就是 `p`。
- 将 `torch.abs(radius_a) - torch.abs(radius_b)` 修改为 `- torch.abs(radius_a) + torch.abs(radius_b)`,这是因为对于第二个条件,应该是减去 `radius_b`,而不是减去 `radius_a`。
- 将 `radius_a ** 2 - radius_b ** 2` 修改为 `(radius_a ** 2) - (radius_b ** 2)`,这是因为先计算平方,再进行减法运算。
- 将 `dis[0] self.args.margin_sub - dis[1]` 修改为 `dis[0] - self.args.margin_sub + dis[1]`,这是因为损失函数应该是正常的差值,而不是差值取相反数再加上第一个数。
阅读全文