default_dof_drive_mode

时间: 2023-09-22 22:07:19 浏览: 137
"default_dof_drive_mode" 是机器人控制中的一个参数,用于指定机器人在执行运动时的默认自由度驱动模式。自由度驱动模式决定了机器人在执行运动时各个关节的控制方式。例如,关节位置控制模式可以使机器人按照特定的轨迹移动,而关节扭矩控制模式可以使机器人对外界力施加反应力。 具体来说,常见的自由度驱动模式包括: - 关节位置控制模式 - 关节速度控制模式 - 关节扭矩控制模式 - 末端位置控制模式 - 末端速度控制模式 - 末端扭矩控制模式 在机器人控制中,根据具体的应用场景和控制需求,可以选择不同的驱动模式来控制机器人的运动。"default_dof_drive_mode"参数的作用就是在机器人控制中指定默认的自由度驱动模式。
相关问题

static size_t i = 0; if (app_type) { memcpy(q_ref.data(), point[0].data(), sizeof(double) * ROBOT_DOF); memcpy(qd_ref.data(), reference_vel.data(), sizeof(double) * ROBOT_DOF); memcpy(qdd_ref.data(), reference_vel.data(), sizeof(double) * ROBOT_DOF); } else { if (i < offline_traj_size) { memcpy(q_ref.data(), offline_traj[i].data(), sizeof(double) * ROBOT_DOF); memcpy(qd_ref.data(), offline_traj_vel[i].data(), sizeof(double) * ROBOT_DOF); memcpy(qdd_ref.data(), offline_traj_acc[i++].data(), sizeof(double) * ROBOT_DOF); } else { if(point_sz != 1) i = 0; else return 1; } } aral->kdCalForwardPosition(toArray(q_ref), false, true, X_ref);// 末端参考位姿在Base坐标系描述 aral->kdCalForwardVelocity(toArray(q_ref), qd_ref, Xd_ref);// 末端参考速度在Base坐标系描述 if (not app_type && point_sz != 1) { if (control_mode == MiniControl::Position) X_ref = aral->kdChangeReferenceFrame(X_ref, aral->kdInverseFrame(X_ref)); // 末端参考位姿在Tool坐标系描述 else Xd_ref = aral->kdChangeWrenchBase(Xd_ref, aral->kdInverseFrame(X_ref)); // 末端参考速度在Tool坐标系描述 }

这段代码是一个条件语句,根据变量`app_type`的值来执行不同的操作。首先,如果`app_type`为真,则将`point[0]`的数据拷贝到`q_ref`、`qd_ref`和`qdd_ref`中。然后,调用`aral->kdCalForwardPosition()`和`aral->kdCalForwardVelocity()`函数计算末端参考位姿和速度。 如果`app_type`为假,则进入下一个条件语句。首先判断变量`i`是否小于`offline_traj_size`,如果是,则将`offline_traj[i]`、`offline_traj_vel[i]`和`offline_traj_acc[i]`的数据拷贝到`q_ref`、`qd_ref`和`qdd_ref`中,并将`i`的值加1。如果`i`大于等于`offline_traj_size`,则进入下一个条件语句。 在下一个条件语句中,判断变量`point_sz`是否不等于1。如果是,则将`i`重置为0。否则,返回1。 最后,根据变量`app_type`和`control_mode`的值,对`X_ref`和`Xd_ref`进行一些处理。如果`control_mode`为MiniControl::Position,则调用`aral->kdChangeReferenceFrame()`函数将末端参考位姿转换到Tool坐标系描述。否则,调用`aral->kdChangeWrenchBase()`函数将末端参考速度转换到Tool坐标系描述。

std::vector<std::vector<double>> calibration_joint(3, std::vector<double>(ROBOT_DOF)); memcpy(calibration_joint[0].data(), calibration_joint1.data(), ROBOT_DOF * sizeof(double)); memcpy(calibration_joint[1].data(), calibration_joint2.data(), ROBOT_DOF * sizeof(double)); memcpy(calibration_joint[2].data(), calibration_joint3.data(), ROBOT_DOF * sizeof(double)); std::vector<double> sensor_data(WORKSPACE_DIM, 0.); std::vector<RLWrench> calib_measure(3); std::vector<RLPose> calib_pose(3); FtSensorCalibResult calibresult; RLWrench sensor_offset{ 0 }; RLPose pose_init{ 0 }; RLPose pose_start{ 0 }; RLPose pose_end{ 0 }; double offline_traj_size; double offline_traj_vel_size; std::vector<RLJntArray> offline_traj; std::vector<RLJntArray> offline_traj_vel; std::vector<RLJntArray> offline_traj_acc; RLJntArray q_cmd{ 0 }; RLJntArray q_start{ 0 }; std::vector<double> q_ref(ROBOT_DOF); std::vector<double> q_init(ROBOT_DOF); std::vector<double> q_temp(ROBOT_DOF); RLJntArray qd_ref{ 0 }; RLJntArray qd_cmd{ 0 }; RLJntArray qdd_ref{ 0 }; RLPose X_cur{ 0 }; RLPose X_cur_flange{ 0 }; RLPose X_ref{ 0 }; RLPose X_cmd{ 0 }; RLTwist Xd_cur{ 0 }; RLTwist Xd_ref{ 0 }; RLTwist Xd_cmd{ 0 }; RLWrench F{ 0 }; RLWrench tcp_wrench{ 0 }; RLWrench in_wrench{ 0 }; RLWrench sensor_wrench{ 0 }; RLJntArray in_torq{ 0 }; RLWrench integral_err_wrench{ 0 }; RLWrench diff_err_wrench{ 0 }; RLWrench last_err_wrench{ 0 }; RLWrench err_wrench{ 0 };

这段代码定义了一系列变量,包括向量、数组和结构体。让我来为您解释一下: - `std::vector<std::vector<double>> calibration_joint(3, std::vector<double>(ROBOT_DOF));` 定义了一个名为 `calibration_joint` 的二维向量,其中包含3个子向量,每个子向量包含 `ROBOT_DOF` 个 `double` 类型的元素。 - `memcpy(calibration_joint[0].data(), calibration_joint1.data(), ROBOT_DOF * sizeof(double));` 通过 `memcpy` 函数将 `calibration_joint1` 的数据复制到 `calibration_joint` 的第一个子向量中。 - `memcpy(calibration_joint[1].data(), calibration_joint2.data(), ROBOT_DOF * sizeof(double));` 通过 `memcpy` 函数将 `calibration_joint2` 的数据复制到 `calibration_joint` 的第二个子向量中。 - `memcpy(calibration_joint[2].data(), calibration_joint3.data(), ROBOT_DOF * sizeof(double));` 通过 `memcpy` 函数将 `calibration_joint3` 的数据复制到 `calibration_joint` 的第三个子向量中。 - `std::vector<double> sensor_data(WORKSPACE_DIM, 0.);` 定义了一个名为 `sensor_data` 的向量,其中包含 `WORKSPACE_DIM` 个元素,每个元素的初始值为0.0。 - `std::vector<RLWrench> calib_measure(3);` 定义了一个名为 `calib_measure` 的向量,其中包含3个 `RLWrench` 类型的元素。 - `std::vector<RLPose> calib_pose(3);` 定义了一个名为 `calib_pose` 的向量,其中包含3个 `RLPose` 类型的元素。 - `FtSensorCalibResult calibresult;` 定义了一个名为 `calibresult` 的结构体变量,类型为 `FtSensorCalibResult`。 - `RLWrench sensor_offset{ 0 };` 定义了一个名为 `sensor_offset` 的 `RLWrench` 类型的变量,并将其初始化为零。 接下来的部分是一系列的变量定义,包括 `pose_init`, `pose_start`, `pose_end`, `offline_traj_size`, `offline_traj_vel_size`, `offline_traj`, `offline_traj_vel`, `offline_traj_acc` 等等,它们的类型和初始化方式与前面的变量类似。 希望这能帮到您!如果您还有其他问题,请随时提问。
阅读全文

相关推荐

大家在看

recommend-type

Digital Fundamentals 10th Ed (Solutions)- Floyd 数字电子技术第十版答案

数字电子技术 第十版 答案 Digital Fundamentals 10th Ed (Solutions)- Floyd
recommend-type

建模-牧场管理

对某一年的数学建模试题牧羊管理进行深入解析,完全是自己的想法,曾获得北方工业大学校级数学建模唯一的一等奖
recommend-type

Advanced Data Structures

高级数据结构 Advanced Data Structures
recommend-type

python爬虫1688一件代发电商工具(一)-抓取商品和匹配关系

从淘管家-已铺货商品列表中导出商品id、导出1688和TB商品的规格匹配关系,存入数据库用作后续的数据分析和商品数据更新 使用步骤: 1.搭建python环境,配置好环境变量 2.配置数据库环境,根据本地数据库连接修改albb_item.py中的数据库初始化参数 3.下载自己浏览器版本的浏览器驱动(webdriver),并将解压后的驱动放在python根目录下 4.将淘管家首页链接补充到albb_item.py的url参数中 5.执行database/DDL中的3个脚本进行数据库建表和数据初始化 6.运行albb_item.py,控制台和数据库观察结果 报错提示: 1.如果浏览器窗口能打开但没有访问url,报错退出,检查浏览器驱动的版本是否正确 2.代码中有红色波浪线,检查依赖包是否都安装完 ps:由于版权审核原因,代码中url请自行填写
recommend-type

普通模式电压的非对称偏置-fundamentals of physics 10th edition

图 7.1 典型的电源配置 上面提到的局部网络的概念要求 不上电的 clamp-15 收发器必须不能降低系统的性能 从总线流入不 上电收发器的反向电流要尽量低 TJA1050 优化成有 低的反向电流 因此被预定用于 clamp-15 节点 在不上电的时候 收发器要处理下面的问题 普通模式信号的非对称偏置 RXD 显性箝位 与 Vcc 逆向的电源 上面的问题将在接下来的章节中讨论 7.1 普通模式电压的非对称偏置 原理上 图 7.2 中的电路根据显性状态的总线电平 给普通模式电压提供对称的偏置 因此 在隐性 状态中 总线电压偏置到对称的 Vcc/2 在不上电的情况下 内部偏置电路是总线向收发器产生显著反向电流的原因 结果 隐性状态下的 DC 电压电平和普通模式电压都下降到低于 Vcc/2 的对称电压 由于 TJA1050 的设计在不上电的情况下 不会 向总线拉电流 因此 和 PCA82C250 相比 TJA1050 的反向电流减少了大约 10% 有很大反向电流的早期收发器的情况如图 7.3 所示 它显示了在报文开始的时候 CANH 和 CANL 的 单端总线电压 同时也显示了相应的普通模式电压

最新推荐

recommend-type

Simple6DoF_Ver2的程序后附每句注释与总结(6关节机器人的控制).docx

《Simple6DoF_Ver2程序详解:六足机器人关节控制》 在机器人技术领域,六足机器人由于其稳定性和适应性,常被用于各种应用,如搜索救援、实验研究等。Simple6DoF_Ver2是针对这类机器人设计的一个控制程序,它实现了...
recommend-type

卡尔曼滤波那点事---Android 9DOF算法

卡尔曼滤波那点事---Android 9DOF 算法 卡尔曼滤波(Kalman Filter)是一种数学算法,用于根据测量值来对系统状态参数进行修正。卡尔曼滤波可以应用于各种领域,如机器人、自动驾驶、导航、机械控制等。下面我们将...
recommend-type

Java源码ssm框架医院预约挂号系统-毕业设计论文-期末大作业.rar

本项目是一个基于Java源码的SSM框架医院预约挂号系统,旨在利用现代信息技术优化医院的挂号流程,提升患者就医体验。系统采用了Spring、Spring MVC和MyBatis三大框架技术,实现了前后端的分离与高效交互。主要功能包括用户注册与登录、医生信息查询、预约挂号、挂号记录查看以及系统管理等。用户可以通过系统便捷地查询医生的专业背景和出诊时间,并根据自己的需求进行预约挂号,避免了长时间排队等候的不便。系统还提供了完善的挂号记录管理,用户可以随时查看自己的预约情况,确保就医计划的顺利执行。此外,系统管理模块支持管理员对医生信息和挂号数据进行维护和管理,确保系统的稳定运行和数据的准确性。该项目不仅提升了医院的运营效率,也为患者提供了更加便捷的服务体验。项目为完整毕设源码,先看项目演示,希望对需要的同学有帮助。
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【热传递模型的终极指南】:掌握分类、仿真设计、优化与故障诊断的18大秘诀

![热传递模型](https://study.com/cimages/videopreview/radiation-heat-transfer-the-stefan-boltzmann-law_135679.png) # 摘要 热传递模型在工程和物理学中占有重要地位,对于提高热交换效率和散热设计至关重要。本文系统性地介绍了热传递模型的基础知识、分类以及在实际中的应用案例。文章详细阐述了导热、对流换热以及辐射传热的基本原理,并对不同类型的热传递模型进行了分类,包括稳态与非稳态模型、一维到三维模型和线性与非线性模型。通过仿真设计章节,文章展示了如何选择合适的仿真软件、构建几何模型、设置材料属性和