寻找轮廓并计算周长 contours, hierarchy = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: perimeter = cv2.arcLength(cnt, True) if 500 < perimeter < 600: # 画出矩形框 x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) 把这段代码改为寻找轮廓并计算前景点的聚集程度
时间: 2024-02-28 12:55:11 浏览: 158
好的,将代码修改为:
```
contours, hierarchy = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
area = cv2.contourArea(cnt)
perimeter = cv2.arcLength(cnt, True)
if 400 < perimeter < 600 and area > 100:
# 计算前景点的聚集程度
compactness = (perimeter ** 2) / area
# 画出轮廓
color = (0, 255, 0) if compactness > 25 else (0, 0, 255)
cv2.drawContours(frame, [cnt], 0, color, 2)
```
这段代码寻找图像中的轮廓,并计算出每个轮廓的面积和周长,然后根据前景点的聚集程度确定轮廓的颜色,并将轮廓绘制到图像上。
阅读全文