# 划分区间 bins = [0,1,2,3,4,5,10,15,20,25,30,35,40,45,50,60,70,80,90,100,1220] data = data_forecast_is_stk_bs_rpt_zq_befor_big['本年比上一年归母倍数'] # 统计每个柱子的数据 hist, edges = pd.cut(data, bins=bins, right=False, include_lowest=True, retbins=True) counts = hist.value_counts() # 按照 hist 的顺序重新排序 counts counts = counts.reindex(hist.cat.categories) # 按照 bins 的顺序给每个柱子指定标签 labels = counts.index.astype(str) fig, ax = plt.subplots(figsize=(18, 6)) # 绘制柱形图 plt.bar(labels, counts) # 添加数据标签 for i, v in enumerate(counts.values): plt.text(i, v, str(v), ha='center', va='bottom') # 设置图表标题和坐标轴标签 plt.title('准确数据-本年小于前一年归母倍数') plt.xlabel('Range') plt.ylabel('Count') # 显示图表 plt.show() # 划分区间 bins1 = [0,1,2,3,4,5,10,15,20,25,30,35,40,45,50,60,70,80,90,100,1220] data1 = data_forecast_is_stk_bs_rpt_cw_befor_big['本年比上一年归母倍数'] # 统计每个柱子的数据 hist1, edges1 = pd.cut(data1, bins=bins1, right=False, include_lowest=True, retbins=True) counts1 = hist1.value_counts() # 按照 hist 的顺序重新排序 counts counts1 = counts1.reindex(hist.cat.categories) # 按照 bins 的顺序给每个柱子指定标签 labels1 = counts1.index.astype(str) fig1, ax1 = plt.subplots(figsize=(18, 6)) # 绘制柱形图 plt.bar(labels, counts) # 添加数据标签 for i, v in enumerate(counts.values): plt.text(i, v, str(v), ha='center', va='bottom') # 设置图表标题和坐标轴标签 plt.title('准确数据-本年小于前一年归母倍数') plt.xlabel('Range') plt.ylabel('Count') # 显示图表 plt.show() 把这2个柱形图做成1个对比柱形图
时间: 2023-09-15 22:24:19 浏览: 181
opencv3/C++ HOG特征提取方式
可以使用 Matplotlib 中的 subplots() 方法创建一个含有两个子图的 Figure 对象,然后在每个子图上分别绘制对应的柱形图,最后使用 tight_layout() 方法调整子图的位置和间距。
以下是可能的代码实现:
```python
import pandas as pd
import matplotlib.pyplot as plt
# 划分区间
bins = [0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 1220]
# 获取数据
data1 = data_forecast_is_stk_bs_rpt_zq_befor_big['本年比上一年归母倍数']
data2 = data_forecast_is_stk_bs_rpt_cw_befor_big['本年比上一年归母倍数']
# 统计每个柱子的数据
hist1, edges1 = pd.cut(data1, bins=bins, right=False, include_lowest=True, retbins=True)
hist2, edges2 = pd.cut(data2, bins=bins, right=False, include_lowest=True, retbins=True)
counts1 = hist1.value_counts()
counts2 = hist2.value_counts()
# 按照 bins 的顺序给每个柱子指定标签
labels = counts1.index.astype(str)
# 创建 Figure 对象和两个子图对象
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(18, 6))
# 在第一个子图上绘制柱形图
ax1.bar(labels, counts1)
for i, v in enumerate(counts1.values):
ax1.text(i, v, str(v), ha='center', va='bottom')
ax1.set_title('准确数据-本年小于前一年归母倍数(证券)')
ax1.set_xlabel('Range')
ax1.set_ylabel('Count')
# 在第二个子图上绘制柱形图
ax2.bar(labels, counts2)
for i, v in enumerate(counts2.values):
ax2.text(i, v, str(v), ha='center', va='bottom')
ax2.set_title('准确数据-本年小于前一年归母倍数(财务)')
ax2.set_xlabel('Range')
ax2.set_ylabel('Count')
# 调整子图的位置和间距
fig.tight_layout()
# 显示图表
plt.show()
```
该代码将会生成一个包含两个子图的对比柱形图,其中左侧子图表示证券数据,右侧子图表示财务数据,它们均基于相同的标签和区间划分。每个子图的 x 轴表示数据范围,y 轴表示相应区间内数据出现的次数,每个柱子的高度表示该区间内的数据数量。同时,在每个柱子上方标注了对应的数据数量。
阅读全文