用c++编写:定义有向图用分支界限算法求tsp最优解

时间: 2024-04-08 07:29:52 浏览: 96
下面是使用C++编写的分支限界算法来解决Traveling Salesman Problem(TSP)的最优解: ```cpp #include <iostream> #include <vector> #include <algorithm> #include <limits> using namespace std; const int INF = numeric_limits<int>::max(); // 有向图的表示 class Graph { public: int vertices; vector<vector<int>> adjacencyMatrix; Graph(int v) : vertices(v) { adjacencyMatrix.resize(v, vector<int>(v, 0)); } void addEdge(int source, int destination, int weight) { adjacencyMatrix[source][destination] = weight; } }; // 分支限界算法求解TSP class TSP { public: int solve(Graph& graph) { vector<int> path; int optimalPath = INF; vector<bool> visited(graph.vertices, false); path.push_back(0); // 从节点0开始 solveUtil(graph, path, visited, 0, optimalPath); return optimalPath; } private: void solveUtil(Graph& graph, vector<int>& path, vector<bool>& visited, int cost, int& optimalPath) { if (path.size() == graph.vertices) { // 更新最优路径 optimalPath = min(optimalPath, cost + graph.adjacencyMatrix[path.back()][0]); return; } int last = path.back(); for (int i = 0; i < graph.vertices; i++) { if (!visited[i]) { visited[i] = true; path.push_back(i); // 计算当前路径的代价 int currentCost = cost + graph.adjacencyMatrix[last][i]; // 剪枝,如果当前路径代价已经大于最优路径,则不再继续搜索 if (currentCost < optimalPath) { solveUtil(graph, path, visited, currentCost, optimalPath); } path.pop_back(); visited[i] = false; } } } }; int main() { int vertices, edges; cout << "Enter the number of vertices: "; cin >> vertices; cout << "Enter the number of edges: "; cin >> edges; Graph graph(vertices); cout << "Enter the edges (source, destination, weight):" << endl; for (int i = 0; i < edges; i++) { int source, destination, weight; cin >> source >> destination >> weight; graph.addEdge(source, destination, weight); } TSP tsp; int optimalPath = tsp.solve(graph); cout << "Optimal TSP path length: " << optimalPath << endl; return 0; } ``` 这段代码实现了使用分支限界算法求解TSP的最优路径。你可以输入图的顶点数和边数,然后依次输入每条边的起点、终点和权重。程序将输出最优TSP路径的长度。请确保输入的图是有向图,并且权重都是非负整数。 希望这能帮到你!如果还有其他问题,请随时提问。
阅读全文

相关推荐

application/x-rar
支限界法类又称为剪枝限界法或分支定界法,它类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。它与回溯法有两点不同:①回溯法只通过约束条件剪去非可行解,而分支限界法不仅通过约束条件,而且通过目标函数的限界来减少无效搜索,也就是剪掉了某些不包含最优解的可行解。②在解空间树上的搜索方式也不相同。回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展结点。为了有效地选择下一扩展结点,以加速搜索的进程, 在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。 从活结点表中选择下一扩展结点的不同方式导致不同的分支限界法。最常见的有以下两种方式: ①队列式(FIFO)分支限界法:队列式分支限界法将活结点表组织成一个队列,并按队列的先进先出原则选取下一个结点为当前扩展结点。 ②优先队列式分支限界法:优先队列式分支限界法将活结点表按照某个估值函数C(x)的值组织成一个优先队列,并按优先队列中规定的结点优先级选取优先级最高的下一个结点成为当前扩展结点。 影响分支限界法搜索效率的有两个主要因素:一是优先队列Q的优先级由C(x)确定,它能否保证在尽可能早的情况下找到最优解,如果一开始找到的就是最优解,那么搜索的空间就能降低到最小。二是限界函数u(x),它越严格就越可能多地剪去分支,从而减少搜索空间。 在用分支限界法解决TSP问题时,有不少很好的限界函数和估值函数已经构造出来出了(限于篇幅,这里不做详细介绍), 使得分支限界法在大多数情况下的搜索效率大大高于回溯法。但是,在最坏情况下,该算法的时间复杂度仍然是O(n!),而且有可能所有的(n-1)!个结点都要存储在队列中。 近似算法是指不能肯定找到最优解的算法,但通常找到的也是比较好的解,或称近似最优解。[20]一般而言,近似算法的时间复杂度较低,通常都是多项式时间内的。由于近似算法的时间效率高,所以在实际应用中,主要是使用近似算法,这一类算法也一直是研究的主要对象。传统的近似算法以采用贪心策略和局部搜索为主,而几十年来,随着以遗传算法为代表的新型启发式搜索算法的逐步完善,在解决TSP问题上获得了巨大的成功。遗传算法、模拟退火算法、蚁群算法等已经成为公认的好算法。在本节中,将介绍传统的近似算法。

最新推荐

recommend-type

遗传退火算法解决TSP、求最优解、波束图设计

遗传退火算法是一种结合了遗传算法与模拟退火思想的优化方法,主要用于寻找复杂问题的全局最优解。在这个实例中,算法被应用到解决旅行商问题(TSP)和求解函数最小值点,同时也涉及到了波束图设计。下面我们将详细...
recommend-type

遗传算法解决TSP问题(C++版)

《遗传算法解决TSP问题(C++版)》 遗传算法是一种模拟自然进化过程的优化方法,常用于解决旅行商问题(TSP)等复杂优化问题。旅行商问题是一个经典的组合优化问题...通过不断迭代,遗传算法能够逼近TSP问题的最优解。
recommend-type

算法设计与分析:分支界限法

例如,在上面的例子中,我们使用队列式分支界限法和优先队列式分支界限法两种方法来解决0-1背包问题,结果发现两个方法生成的节点顺序不同,但最优解完全一样。 此外,分支界限法也可以用于解决其他组合优化问题,...
recommend-type

TSP问题蚁群算法C++实现

该资源是一个使用C++语言实现的蚁群算法解决TSP(旅行商问题)问题的程序。下面是该资源的详细解释: 蚁群算法 蚁群算法是一种基于 Swarm Intelligence 的-metaheuristic 算法,用来解决复杂的组合优化问题。该...
recommend-type

C语言编的遗传算法解TSP问题代码

本文将详细讲解C语言编程的遗传算法解TSP问题代码,包括遗传算法的基本概念、TSP问题的定义、代码实现细节等。 遗传算法基本概念 遗传算法是一种基于自然选择和遗传学的搜索优化方法,模拟生物进化的过程。其基本...
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。