@FunctionalInterface 多层

时间: 2024-06-03 14:03:36 浏览: 16
@FunctionalInterface 是Java 8引入的一个注解,用于标识一个接口是函数式接口。函数式接口是指只包含一个抽象方法的接口,可以用作Lambda表达式的目标类型。 多层继承是指在面向对象编程中,一个类可以继承自另一个类,而被继承的类又可以继承自其他类,形成多层次的继承关系。 在Java中,一个类只能直接继承自一个父类,但可以间接继承自多个父类。这样的继承关系形成了类的层次结构,也称为继承树。
相关问题

@ConfigurationProperties涉及多层怎么取值

在使用@ConfigurationProperties注解进行属性绑定时,涉及多层结构的情况下,可以通过创建嵌套类来表示多层结构,并使用@ConfigurationProperties注解进行属性绑定。例如,创建一个嵌套类来表示多层属性结构,并在该类上添加@ConfigurationProperties注解,指定对应的前缀。然后,通过在父类中引入嵌套类并使用@ConfigurationProperties注解进行属性绑定。具体操作步骤如下: 首先,在父类中引入嵌套类,并在该属性上添加@ConfigurationProperties注解,指定对应的前缀。例如: ``` @ConfigurationProperties(prefix = "parent") public class ParentConfig { private ChildConfig child; // Getter and Setter for child ... } ``` 然后,在父类中创建一个嵌套类,表示多层属性结构,并在该类上添加@ConfigurationProperties注解,指定对应的前缀。例如: ``` @Data public class ChildConfig { private String value1; private String value2; // Getter and Setter for value1 and value2 ... } ``` 最后,在引导类中使用@EnableConfigurationProperties注解指定父类,将其注入到Spring容器中。例如: ``` @EnableConfigurationProperties(ParentConfig.class) @SpringBootApplication public class MyApplication { public static void main(String[] args) { SpringApplication.run(MyApplication.class, args); } } ``` 这样,就可以通过将多层结构的属性值注入到父类中,并在应用程序中访问这些属性值。例如,使用@Autowired注解将父类注入到其他组件中,并访问其中的属性值。 ``` @Component public class MyComponent { @Autowired private ParentConfig parentConfig; public void doSomething() { ChildConfig childConfig = parentConfig.getChild(); String value1 = childConfig.getValue1(); String value2 = childConfig.getValue2(); // Do something with value1 and value2 ... } } ``` 这样,就可以在应用程序中获取到多层结构的属性值了。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [SpringBoot学习笔记一](https://blog.csdn.net/weixin_51391532/article/details/127330905)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [【学习日记2023.5.30】之 管理端订单模块完善_调用百度地图优化用户端提交订单是否超出配送距离](https://blog.csdn.net/qq_42575689/article/details/130956400)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

@ConfigurationProperties多层获取

@ConfigurationProperties可以通过在类上使用prefix属性来实现多层获取配置属性的功能。在prefix属性中可以使用"."来表示层级关系。例如,如果有一个属性的完整路径是"myapp.database.url",可以在@ConfigurationProperties注解中设置prefix="myapp",然后在对应的类中定义一个属性名为"database.url"的字段来获取该属性的值。 与@ConfigurationProperties注解不同的是,@Value注解是用来获取单个属性值的。它可以直接注入到字段或者方法参数中,通过使用"${}"来指定属性的名称。例如,@Value("${myapp.database.url}")可以用来获取"myapp.database.url"属性的值。 总结来说,@ConfigurationProperties适用于批量获取属性,并且支持多层次的配置路径。而@Value适用于获取单个属性的值。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [@ConfigurationProperties获取springboot yml中的复杂数据](https://blog.csdn.net/weixin_39531229/article/details/113024881)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* [【Java】springboot#@ConfigurationProperties注解获取配置属性值为NULL?](https://blog.csdn.net/weixin_42301816/article/details/114507209)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

相关推荐

最新推荐

recommend-type

TensorFlow实现MLP多层感知机模型

在本文中,我们将探讨如何使用TensorFlow实现多层感知机(MLP)模型。多层感知机是一种深度学习模型,通常用于分类任务,特别是处理复杂的非线性关系。在TensorFlow中构建这样的模型,我们需要理解其基本原理、过...
recommend-type

PCB多层板各层含义详解

PCB多层板是电子设备中不可或缺的一部分,它利用多层单面板或双面板的布线结构,通过层间连接实现复杂的电路布局。随着科技的进步,尤其是表面安装技术(SMT)和表面安装器件(SMD)的发展,如QFP、QFN、CSP、BGA等...
recommend-type

多层板中间地层分割处理技巧

在一些中等复杂的中低频电子系统设计中往往牵涉到模拟数字混合系统,且同在一个板上。如果使用四层板,中间地层建议作分割处理。
recommend-type

详解Python读取yaml文件多层菜单

主要介绍了Python读取yaml文件多层菜单,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

python实现多层感知器MLP(基于双月数据集)

主要为大家详细介绍了python实现多层感知器MLP,基于双月数据集,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。