deg=scatter_add(one_hot,edge_index[0].to(torch.int64),dim=0,dim_size=num_entity)
时间: 2024-06-03 10:10:32 浏览: 146
这是一段Python代码,其中包含使用PyTorch框架中的scatter_add函数对输入的独热编码向量one_hot按照给定的维度dim对应的索引edge_index进行scatter加法操作,并将结果保存在长度为num_entity的张量中。具体来说,这段代码是在进行图神经网络的训练过程中,用于计算图中每个实体节点的邻居节点向量的和。
相关问题
def gcn_norm(edge_index, edge_weight=None, num_nodes=None, improved=False, add_self_loops=True, flow="source_to_target", dtype=None): fill_value = 2. if improved else 1. if isinstance(edge_index, SparseTensor): assert flow in ["source_to_target"] adj_t = edge_index if not adj_t.has_value(): adj_t = adj_t.fill_value(1., dtype=dtype) if add_self_loops: adj_t = fill_diag(adj_t, fill_value) deg = sparsesum(adj_t, dim=1) deg_inv_sqrt = deg.pow_(-0.5) deg_inv_sqrt.masked_fill_(deg_inv_sqrt == float('inf'), 0.) adj_t = mul(adj_t, deg_inv_sqrt.view(-1, 1)) adj_t = mul(adj_t, deg_inv_sqrt.view(1, -1)) return adj_t else: assert flow in ["source_to_target", "target_to_source"] num_nodes = maybe_num_nodes(edge_index, num_nodes) if edge_weight is None: edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype, device=edge_index.device) if add_self_loops: edge_index, tmp_edge_weight = add_remaining_self_loops( edge_index, edge_weight, fill_value, num_nodes) assert tmp_edge_weight is not None edge_weight = tmp_edge_weight row, col = edge_index[0], edge_index[1] idx = col if flow == "source_to_target" else row deg = scatter_add(edge_weight, idx, dim=0, dim_size=num_nodes) deg_inv_sqrt = deg.pow_(-0.5) deg_inv_sqrt.masked_fill_(deg_inv_sqrt == float('inf'), 0) return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
这段代码是一个用于计算GCN中归一化邻接矩阵的函数。下面是对代码的解读:
输入参数:
- edge_index:图的边索引,可以是一个包含两行的长为2的Tensor,表示边的起点和终点的索引。也可以是一个SparseTensor对象,表示稀疏的边索引。
- edge_weight:边的权重,可选参数,默认为None。如果不提供权重,则默认为全1.
- num_nodes:节点的数量,可选参数,默认为None。如果不提供数量,则通过edge_index推断得到。
- improved:布尔值,表示是否采用改进的归一化方式,默认为False。
- add_self_loops:布尔值,表示是否添加自环,默认为True。
- flow:字符串,表示信息传播的方向,默认为"source_to_target",即从源节点到目标节点。
函数内部逻辑:
1. 根据是否是SparseTensor对象,判断是稀疏还是稠密的边索引。
2. 对于稀疏边索引,首先判断信息传播方向是否为"source_to_target",然后进行按行归一化的处理。具体操作包括:
- 填充值的选择根据是否采用改进的方式而定。
- 如果边索引没有值,则填充为1。
- 如果需要添加自环,则对稀疏边索引进行填充对角线操作。
- 计算每个节点的度矩阵。
- 计算度矩阵的逆平方根。
- 对邻接矩阵进行按行归一化。
3. 对于稠密边索引,首先根据信息传播方向进行处理。具体操作包括:
- 如果需要添加自环,则对边索引和权重进行添加自环操作。
- 根据信息传播方向,选择相应的索引进行节点度计算。
- 计算度矩阵的逆平方根。
- 对边索引进行按元素归一化。
最终返回归一化后的邻接矩阵或者边索引。
def forward(self, x, target): assert x.size(1) == self.size true_dist = x.data.clone() true_dist.fill_(self.smoothing / (self.size - 2))#然后其他地方给0平分 index = torch.tensor([0, 1, 2], dtype=torch.int32) index = index.to (torch.int64) true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) true_dist[:, self.padding_idx] = 0 mask = torch.nonzero(target.data == self.padding_idx) if mask.dim() > 0:#mask的地方都得是0 true_dist.index_fill_(0, mask.squeeze(), 0.0) self.true_dist = true_dist #计算KL散度 return self.criterion(x, Variable(true_dist, requires_grad=False))这里数据类型该怎么转换
在这段代码中,目前没有需要进行数据类型转换的地方。索引数据类型已经被正确地转换为int64。
`true_dist`是一个tensor,它已经正确地使用scatter_()函数进行了操作。在scatter_()函数中,target.data.unsqueeze(1)作为索引,self.confidence作为值进行了填充。这里不需要进行数据类型转换。
关于`mask`的处理,`torch.nonzero()`返回的是非零元素的索引,因此它的数据类型是int64。所以在这里也不需要进行数据类型转换。
因此,你不需要对数据类型进行额外的转换,代码中已经正确处理了数据类型。
阅读全文