写一个cache模拟器,模拟cache不同配置下的命中率。
时间: 2023-11-23 14:05:47 浏览: 173
cache_code.rar_cache_cache命中率_cache映射_cache模拟_cache模拟器
以下是一个简单的Cache模拟器,可以模拟Cache不同配置下的命中率:
```python
class CacheSimulator:
def __init__(self, cache_size, block_size, associativity):
self.cache_size = cache_size
self.block_size = block_size
self.associativity = associativity
self.num_blocks = cache_size // block_size
self.num_sets = self.num_blocks // associativity
self.tag_array = [[None for _ in range(associativity)] for _ in range(self.num_sets)]
self.valid_array = [[0 for _ in range(associativity)] for _ in range(self.num_sets)]
self.lru_array = [[0 for _ in range(associativity)] for _ in range(self.num_sets)]
self.hits = 0
self.misses = 0
def access(self, address):
tag, index, offset = self.split_address(address)
for i in range(self.associativity):
if self.tag_array[index][i] == tag and self.valid_array[index][i] == 1:
self.hits += 1
self.update_lru(index, i)
return
self.misses += 1
for i in range(self.associativity):
if self.valid_array[index][i] == 0:
self.tag_array[index][i] = tag
self.valid_array[index][i] = 1
self.update_lru(index, i)
return
lru_index = self.get_lru_index(index)
self.tag_array[index][lru_index] = tag
self.update_lru(index, lru_index)
def split_address(self, address):
offset_bits = int(math.log(self.block_size, 2))
index_bits = int(math.log(self.num_sets, 2))
tag_bits = 32 - offset_bits - index_bits
offset = address & (self.block_size - 1)
index = (address >> offset_bits) & (self.num_sets - 1)
tag = address >> (offset_bits + index_bits)
return tag, index, offset
def update_lru(self, index, way):
for i in range(self.associativity):
if self.lru_array[index][i] < self.lru_array[index][way]:
self.lru_array[index][i] += 1
self.lru_array[index][way] = 0
def get_lru_index(self, index):
max_lru = max(self.lru_array[index])
for i in range(self.associativity):
if self.lru_array[index][i] == max_lru:
return i
def print_stats(self):
total_accesses = self.hits + self.misses
hit_rate = self.hits / total_accesses * 100
miss_rate = self.misses / total_accesses * 100
print(f"Cache size: {self.cache_size}")
print(f"Block size: {self.block_size}")
print(f"Associativity: {self.associativity}")
print(f"Total accesses: {total_accesses}")
print(f"Hits: {self.hits} ({hit_rate:.2f}%)")
print(f"Misses: {self.misses} ({miss_rate:.2f}%)")
cache_sizes = [1024, 2048, 4096]
block_sizes = [16, 32, 64]
associativities = [1, 2, 4]
for cache_size in cache_sizes:
for block_size in block_sizes:
for associativity in associativities:
cache = CacheSimulator(cache_size, block_size, associativity)
# simulate cache accesses with different workloads
# ...
cache.print_stats()
```
在上面的代码中,`CacheSimulator` 类实现了一个 Cache 模拟器,其中 `cache_size`、`block_size`、`associativity` 分别表示 Cache 的大小、块大小和关联度。模拟器使用一个二维数组 `tag_array` 存储缓存中的标记信息,使用一个二维数组 `valid_array` 存储缓存中的有效位信息,使用一个二维数组 `lru_array` 存储缓存中的 LRU 信息。`access` 方法用于模拟 Cache 的读写操作,`split_address` 方法用于将地址分解为标记、索引和偏移量,`update_lru` 方法用于更新 LRU 信息,`get_lru_index` 方法用于获取 LRU 最大的块的索引。最后,`print_stats` 方法用于打印统计信息。
在上面的代码中,我们可以使用三重循环来模拟不同的 Cache 配置,然后调用 `CacheSimulator` 类的方法来模拟 Cache 的读写操作,并打印统计信息。在实际应用中,我们需要根据实际情况选择不同的工作负载数据集,以模拟不同的应用场景。
阅读全文