注意力机制进行人脸表情识别的代码
时间: 2023-11-12 14:06:52 浏览: 100
以下是使用注意力机制进行人脸表情识别的代码示例,主要使用了PyTorch框架和FER2013数据集:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
class AttentionModel(nn.Module):
def __init__(self):
super(AttentionModel, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv2 = nn.Conv2d(10, 20, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv3 = nn.Conv2d(20, 40, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.attention_conv = nn.Conv2d(40, 1, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0))
self.fc1 = nn.Linear(40, 7)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, kernel_size=(2, 2))
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, kernel_size=(2, 2))
x = F.relu(self.conv3(x))
x = F.max_pool2d(x, kernel_size=(2, 2))
attention_map = F.sigmoid(self.attention_conv(x))
x = x * attention_map
x = x.view(x.size(0), -1)
x = F.softmax(self.fc1(x), dim=1)
return x
class FERDataset(Dataset):
def __init__(self, csv_file, transform=None):
self.data = pd.read_csv(csv_file)
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
image = np.asarray([int(p) for p in self.data.iloc[idx, 1].split()]).reshape(48, 48, 1)
label = int(self.data.iloc[idx, 0])
if self.transform:
image = self.transform(image)
return image, label
transformations = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_dataset = FERDataset('train.csv', transformations)
train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
model = AttentionModel().cuda()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(10):
for i, (images, labels) in enumerate(train_dataloader):
images, labels = images.cuda(), labels.cuda()
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, i+1, len(train_dataloader), loss.item()))
# Testing the model on test dataset
test_dataset = FERDataset('test.csv', transformations)
test_dataloader = DataLoader(test_dataset, batch_size=64, shuffle=True, num_workers=4)
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_dataloader:
images, labels = images.cuda(), labels.cuda()
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
```
这段代码实现了一个基于注意力机制的人脸表情识别模型,训练集和测试集均来自FER2013数据集。在模型训练过程中,最后输出的准确率可作为模型表现的评价指标。
阅读全文