def _load_rml(self, npy_file): data = np.load(npy_file, allow_pickle=True) data = np.expand_dims(data, axis=0)/255.0解释代码
时间: 2024-05-27 17:09:53 浏览: 175
这段代码是用来加载一个.npy格式的文件,并将其归一化处理的。具体来说:
- `np.load(npy_file, allow_pickle=True)`:使用NumPy库中的`load()`函数加载.npy文件,`allow_pickle=True`表示允许加载包含Python对象的文件。
- `data = np.expand_dims(data, axis=0)`:将数据的维度扩展一维,变成一个4维张量,第一维为1,因为此处只加载了一个数据。
- `/255.0`:将像素值归一化到[0,1]的范围内。
最终得到的`data`是一个形状为`(1, H, W, C)`的4维张量,其中`H`、`W`和`C`分别表示图片的高、宽和通道数。
相关问题
def __getitem__(self, index): if self.args.cached: (label, _, image) = self.data[index] else: (label, _file) = self.file_indexes[index] image = self._load_rml(_file) n_label = self.classes.index(label) return torch.tensor(image).float(), torch.tensor(n_label).long()把这段代码基于pytorch改为基于mindspore
以下是基于MindSpore的代码实现:
```
import mindspore.dataset as ds
import mindspore.dataset.transforms.py_transforms as py_transforms
import mindspore.common.dtype as mstype
import numpy as np
class MyDataset:
def __init__(self, args):
self.args = args
self.classes = sorted(list(set([item[0] for item in self.args.data])))
self.data = self.args.data
self.file_indexes = [(item[0], idx) for idx, item in enumerate(self.args.data)]
def _load_rml(self, file):
# 加载数据的代码
pass
def __getitem__(self, index):
if self.args.cached:
(label, _, image) = self.data[index]
else:
(label, file_idx) = self.file_indexes[index]
image = self._load_rml(self.args.data[file_idx][1])
n_label = self.classes.index(label)
return np.array(image).astype(np.float32), np.array(n_label).astype(np.int32)
def __len__(self):
return len(self.file_indexes)
# 数据增强
transform = py_transforms.Compose([
py_transforms.Resize((224, 224)),
py_transforms.RandomHorizontalFlip(),
py_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 数据集加载
ds.config.set_seed(1)
ds_train = ds.GeneratorDataset(MyDataset(args), ["image", "label"])
ds_train = ds_train.shuffle(buffer_size=1000)
ds_train = ds_train.batch(batch_size=args.batch_size, drop_remainder=True)
ds_train = ds_train.map(operations=transform, input_columns="image", num_parallel_workers=4)
ds_train = ds_train.map(operations=lambda x, y: (mindspore.Tensor(x, mstype.float32), mindspore.Tensor(y, mstype.int32)))
```
注意:MindSpore的数据增强需要使用`transforms`模块中的函数,而数据集加载则需要使用`GeneratorDataset`类。在MindSpore中,需要使用`mindspore.Tensor`将数据转换为张量类型。
import os import pickle import cv2 import matplotlib.pyplot as plt import numpy as np from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from keras.models import Sequential from keras.optimizers import adam_v2 from keras_preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder, OneHotEncoder, LabelBinarizer def load_data(filename=r'/root/autodl-tmp/RML2016.10b.dat'): with open(r'/root/autodl-tmp/RML2016.10b.dat', 'rb') as p_f: Xd = pickle.load(p_f, encoding="latin-1") # 提取频谱图数据和标签 spectrograms = [] labels = [] train_idx = [] val_idx = [] test_idx = [] np.random.seed(2016) a = 0 for (mod, snr) in Xd: X_mod_snr = Xd[(mod, snr)] for i in range(X_mod_snr.shape[0]): data = X_mod_snr[i, 0] frequency_spectrum = np.fft.fft(data) power_spectrum = np.abs(frequency_spectrum) ** 2 spectrograms.append(power_spectrum) labels.append(mod) train_idx += list(np.random.choice(range(a * 6000, (a + 1) * 6000), size=3600, replace=False)) val_idx += list(np.random.choice(list(set(range(a * 6000, (a + 1) * 6000)) - set(train_idx)), size=1200, replace=False)) a += 1 # 数据预处理 # 1. 将频谱图的数值范围调整到0到1之间 spectrograms_normalized = spectrograms / np.max(spectrograms) # 2. 对标签进行独热编码 label_binarizer = LabelBinarizer() labels_encoded= label_binarizer.fit_transform(labels) # transfor the label form to one-hot # 3. 划分训练集、验证集和测试集 # X_train, X_temp, y_train, y_temp = train_test_split(spectrograms_normalized, labels_encoded, test_size=0.15, random_state=42) # X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42) spectrogramss = np.array(spectrograms_normalized) print(spectrogramss.shape) labels = np.array(labels) X = np.vstack(spectrogramss) n_examples = X.shape[0] test_idx = list(set(range(0, n_examples)) - set(train_idx) - set(val_idx)) np.random.shuffle(train_idx) np.random.shuffle(val_idx) np.random.shuffle(test_idx) X_train = X[train_idx] X_val = X[val_idx] X_test = X[test_idx] print(X_train.shape) print(X_val.shape) print(X_test.shape) y_train = labels[train_idx] y_val = labels[val_idx] y_test = labels[test_idx] print(y_train.shape) print(y_val.shape) print(y_test.shape) # X_train = np.expand_dims(X_train,axis=-1) # X_test = np.expand_dims(X_test,axis=-1) # print(X_train.shape) return (mod, snr), (X_train, y_train), (X_val, y_val), (X_test, y_test) 这是我的数据预处理代码
你的数据预处理代码看起来很完整。它首先加载pickle文件,然后提取频谱图数据和标签。接下来,它对频谱图数据进行归一化处理,并对标签进行独热编码。最后,它将数据集划分为训练集、验证集和测试集,并返回这些数据集。
在代码中,你还有一些注释掉的代码段,例如对数据集进行划分的部分。如果你打算使用这些划分代码,你可以取消注释相应的行。另外,如果你的频谱图数据维度是二维的,你可能需要使用`np.expand_dims`函数将其扩展为三维,以便与Conv2D层兼容。
如果你还有其他问题或需要进一步帮助,请随时问我。
阅读全文