pytorch框架中目标检测模型中如何将iou替换成Ciou的代码
时间: 2023-09-20 13:05:57 浏览: 109
### 回答1:
可以使用Pytorch中提供的bbox_iou函数,将其中的IoU替换成CIoU,并将关于CIoU的公式加入到函数中。具体代码如下:
def bbox_ciou(box1, box2, eps=1e-5):
# box1 [xmin, ymin, xmax, ymax]
# box2 [xmin, ymin, xmax, ymax]
# Calculate the IoU between two bounding boxes. # Calculate the area of each box.
area1 = (box1[2] - box1[0] + eps) * (box1[3] - box1[1] + eps)
area2 = (box2[2] - box2[0] + eps) * (box2[3] - box2[1] + eps)
# Calculate the coordinates of the intersection box.
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
# Calculate the area of intersection box.
area_intersect = max(0, x2 - x1 + eps) * max(0, y2 - y1 + eps)
# Calculate the IoU.
iou = area_intersect / (area1 + area2 - area_intersect + eps)
# Calculate the coordinates of the enclosing box.
x1_encl = min(box1[0], box2[0])
y1_encl = min(box1[1], box2[1])
x2_encl = max(box1[2], box2[2])
y2_encl = max(box1[3], box2[3])
# Calculate the area of enclosing box.
area_encl = (x2_encl - x1_encl + eps) * (y2_encl - y1_encl + eps)
# Calculate the CIoU.
ciou = iou - (area_encl - area1 - area2 + area_intersect) / (area_encl + eps)
return ciou
### 回答2:
在PyTorch框架中,实现将IoU替换为CIoU的代码需要进行以下步骤:
1. 导入必要的库:
```python
import torch
```
2. 实现CIoU计算函数:
```python
def ciou(box1, box2):
# 计算box1和box2的坐标点
x1, y1, w1, h1 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
x2, y2, w2, h2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
# 计算两个框的面积
area1, area2 = w1 * h1, w2 * h2
# 计算两个框的中心点坐标
xc1, yc1 = x1 + w1 / 2, y1 + h1 / 2
xc2, yc2 = x2 + w2 / 2, y2 + h2 / 2
# 计算框的对角线长度
diagonal = ((w2 ** 2) + (h2 ** 2)) ** 0.5
# 计算两个框的交并比IoU
iou = torch.abs(torch.min(x1 + w1, x2 + w2) - torch.max(x1, x2)) * torch.abs(
torch.min(y1 + h1, y2 + h2) - torch.max(y1, y2)
) / (area1 + area2)
# 计算两个框的中心点距离
distance = (xc2 - xc1) ** 2 + (yc2 - yc1) ** 2
# 计算两个框的对角线距离
diagonal_distance = diagonal ** 2
# 计算CIoU
ciou = iou - (distance / diagonal_distance)
return ciou
```
3. 替换目标检测模型中的IoU计算函数:
```python
# 将原先计算IoU的部分替换为CIoU计算
iou = ciou(box1, box2)
```
通过以上步骤,即可将PyTorch框架中目标检测模型中的IoU替换为CIoU的代码实现。
### 回答3:
在PyTorch框架中,要将IoU(交并比)替换为Ciou(完整交并比),可以使用以下代码:
```python
import torch
def compute_iou(boxes1, boxes2):
# 计算IoU
# boxes1和boxes2的shape均为[N, 4],其中N表示box的数量,每个box有4个坐标值(左上角x、y和右下角x、y)
# 返回的IoU的shape为[N, N]
# 计算boxes的面积
area1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1])
area2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1])
# 计算相交部分的坐标
x1 = torch.max(boxes1[:, None, 0], boxes2[:, 0])
y1 = torch.max(boxes1[:, None, 1], boxes2[:, 1])
x2 = torch.min(boxes1[:, None, 2], boxes2[:, 2])
y2 = torch.min(boxes1[:, None, 3], boxes2[:, 3])
# 计算相交部分的面积
intersection = torch.clamp(x2 - x1, min=0) * torch.clamp(y2 - y1, min=0)
# 计算并集的面积
union = area1[:, None] + area2 - intersection
# 计算IoU
iou = intersection / union
return iou
def compute_ciou(boxes1, boxes2):
# 计算Ciou
# boxes1和boxes2的shape均为[N, 4],其中N表示box的数量,每个box有4个坐标值(左上角x、y和右下角x、y)
# 返回的Ciou的shape为[N, N]
# 计算IoU
iou = compute_iou(boxes1, boxes2)
# 计算boxes的中心点坐标
x1c = (boxes1[:, 2] + boxes1[:, 0]) / 2
y1c = (boxes1[:, 3] + boxes1[:, 1]) / 2
x2c = (boxes2[:, 2] + boxes2[:, 0]) / 2
y2c = (boxes2[:, 3] + boxes2[:, 1]) / 2
# 计算boxes的宽度和高度
w1 = boxes1[:, 2] - boxes1[:, 0]
h1 = boxes1[:, 3] - boxes1[:, 1]
w2 = boxes2[:, 2] - boxes2[:, 0]
h2 = boxes2[:, 3] - boxes2[:, 1]
# 计算boxes的对角线长度
d1 = torch.sqrt(w1.pow(2) + h1.pow(2))
d2 = torch.sqrt(w2.pow(2) + h2.pow(2))
# 计算enclose boxes的左上角和右下角坐标
x1 = torch.min(boxes1[:, None, 0], boxes2[:, 0])
y1 = torch.min(boxes1[:, None, 1], boxes2[:, 1])
x2 = torch.max(boxes1[:, None, 2], boxes2[:, 2])
y2 = torch.max(boxes1[:, None, 3], boxes2[:, 3])
# 计算enclose boxes的宽度和高度
w = x2 - x1
h = y2 - y1
# 计算enclose boxes的对角线长度
d = torch.sqrt(w.pow(2) + h.pow(2))
# 计算相对补偿参数v
v = (4 / (math.pi ** 2)) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
# 计算完整交并比Ciou
ciou = iou - (torch.pow((x1c[:, None] - x2c) / d, 2) + torch.pow((y1c[:, None] - y2c) / d, 2)) - v
return ciou
```
这段代码实现了计算IoU和Ciou的函数。`compute_iou`函数计算输入两个box的IoU,`compute_ciou`函数在计算IoU的基础上补充了Ciou的计算公式。使用这些函数,你可以将原始目标检测模型中计算IoU的代码替换为计算Ciou的代码。
阅读全文