import pandas as pd import seaborn as sns import matplotlib.pyplot as plt plt.rcParams['font.family'] = 'Fangsong' # 指定使用宋体字体 fig= plt.figure(figsize=(30, 25), dpi=300) ax1= fig.add_subplot(131) # 读取数据 df = pd.read_excel("test_Fd.xlsx") 把Fendmc是140-160马力四轮驱动动力换挡拖拉机查找出来
时间: 2024-02-21 12:58:02 浏览: 155
你可以使用 Pandas 的 loc 函数来筛选符合条件的数据,代码如下:
```python
df.loc[(df['Fendmc'] == '140-160马力四轮驱动动力换挡拖拉机')]
```
其中,`df['Fendmc']` 表示选取数据表中名为 Fendmc 的列,`==` 表示判断是否相等,`'140-160马力四轮驱动动力换挡拖拉机'` 则为要查找的值。
这行代码会返回符合条件的所有行数据,你可以根据需要进行进一步处理。
相关问题
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus']=False %matplotlib inline
这段代码主要是进行Python数据分析所需要引入的常用库的导入和设置matplotlib图表显示中文的字体和解决负号显示问题,同时使用%matplotlib inline命令设置图表以内嵌形式显示在notebook页面中。其中,numpy是Python中处理科学计算的一个重要库,pandas是Python中用于数据分析的库,seaborn是基于matplotlib的数据可视化库,matplotlib是Python中常用的绘图库。
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import rcParams import seaborn as sns import warnings from sklearn.neighbors import KNeighborsClassifier包含的库函数
这段代码包含了以下库函数:
1. numpy:用于科学计算,支持数组和矩阵运算;
2. pandas:用于数据处理和分析,可以用来进行数据的读取、清洗、转换等操作;
3. matplotlib:用于绘制2D图表和图形界面;
4. seaborn:基于matplotlib的可视化库,提供更高级的图表和样式;
5. sklearn.neighbors:包含了KNN(K-Nearest Neighbors)分类器的实现,可以用于分类问题。
此外,还有一些辅助函数和参数,如:
1. plt:matplotlib的pyplot子模块,提供了更简便的API来绘制图表;
2. rcParams:matplotlib的默认参数设置,可以用来设置全局的绘图参数;
3. warnings:用于控制警告信息的输出。
阅读全文