resnet与传统目标识别分类中特征提取与选择的关系?
时间: 2023-06-16 21:06:26 浏览: 194
ResNet是一种深度残差网络,可以有效地解决深度神经网络中的梯度消失和梯度爆炸问题。在传统目标识别分类中,特征提取和选择是非常重要的步骤。ResNet通过引入残差块的方式,使得网络可以跨越多个层次直接学习残差,从而使得特征提取和选择更加高效和准确。在ResNet中,每个残差块都有一个跳跃连接,可以直接将输入特征图与输出特征图相加,从而使得网络可以更加灵活地学习到目标的特征。此外,ResNet还采用了批归一化和全局平均池化等技术,进一步提高了特征提取和选择的效果。因此,可以说ResNet对于特征提取和选择在传统目标识别分类中有着非常重要的作用。
阅读全文