node.js实现协同过滤算法
时间: 2023-11-24 07:51:28 浏览: 310
协同过滤算法是推荐系统中常用的算法之一,而Node.js也可以实现协同过滤算法。下面是一个简单的实现过程:
1.首先,需要安装Node.js和相关的包,例如mathjs和csv-parse。可以使用以下命令进行安装:
```shell
npm install mathjs csv-parse
```
2.接下来,需要读取数据集并将其转换为矩阵。可以使用csv-parse包来读取CSV文件,并使用mathjs包来创建矩阵。以下是一个示例代码:
```javascript
const parse = require('csv-parse');
const math = require('mathjs');
// 读取CSV文件
const csvData = 'user,item,rating\n1,101,5\n1,102,3\n2,101,2\n2,102,5\n3,101,5\n3,102,2';
parse(csvData, {columns: true}, (err, data) => {
if (err) {
console.error(err);
return;
}
// 将数据转换为矩阵
const users = math.unique(data.map(d => d.user)).sort();
const items = math.unique(data.map(d => d.item)).sort();
const ratings = math.zeros(users.length, items.length); data.forEach(d => {
const i = items.indexOf(d.item);
const j = users.indexOf(d.user);
ratings.set([j, i], parseInt(d.rating));
});
});
```
3.然后,需要计算用户之间的相似度。可以使用余弦相似度来计算用户之间的相似度。以下是一个示例代码:
```javascript
// 计算用户之间的相似度
const similarities = math.zeros(users.length, users.length);
for (let i = 0; i < users.length; i++) {
for (let j = i + 1; j < users.length; j++) {
const ri = ratings.subset(math.index(i, math.range(0, items.length)));
const rj = ratings.subset(math.index(j, math.range(0, items.length)));
const numerator = math.sum(math.dotMultiply(ri, rj));
const denominator = math.sqrt(math.sum(math.square(ri))) * math.sqrt(math.sum(math.square(rj)));
similarities.set([i, j], numerator / denominator);
similarities.set([j, i], numerator / denominator);
}
}
```
4.最后,需要预测用户对未评分物品的评分。可以使用加权平均数来预测用户对未评分物品的评分。以下是一个示例代码:
```javascript
// 预测用户对未评分物品的评分
const userIndex = users.indexOf(1);
const itemIndex = items.indexOf(103);
const unratedItems = ratings.subset(math.index(userIndex, math.range(0, items.length))).toArray().map((r, i) => r === 0 ? i : -1).filter(i => i !== -1);
const similaritiesToUser = similarities.subset(math.index(math.range(0, users.length), userIndex));
const similaritiesToUserFiltered = similaritiesToUser.toArray().map((s, i) => unratedItems.includes(i) ? s : 0);
const ratingsOfSimilarUsers = ratings.subset(math.index(math.range(0, users.length), math.index(unratedItems, math.range(0, items.length))));
const weightedRatingsOfSimilarUsers = math.dotMultiply(ratingsOfSimilarUsers, similaritiesToUserFiltered).toArray().map(r => math.sum(r)).map((r, i) => r / math.sum(similaritiesToUserFiltered.toArray().map((s, j) => s * (ratingsOfSimilarUsers.subset(math.index(j, i)) !== 0 ? 1 : 0))));
const predictedRating = math.sum(weightedRatingsOfSimilarUsers) / math.sum(similaritiesToUserFiltered);
console.log(predictedRating);
```
阅读全文