swin transformer实现512x512灰度图
时间: 2024-06-01 10:07:18 浏览: 148
为了实现512x512灰度图的分类,我们可以参考以下步骤:
1.使用`pip install torch torchvision`命令安装PyTorch和TorchVision包。
2.从TorchVision中加载灰度图像并进行转换。我们可以使用以下代码来加载图像并将其转换为PyTorch张量:
```python
from PIL import Image
import torchvision.transforms.functional as TF
# Load the grayscale image and convert it to a PyTorch tensor
img = Image.open("image.jpg").convert("L")
tensor_img = TF.to_tensor(img)
```
3.准备预先训练好的Swin Transformer模型。可以使用以下代码下载并加载预先训练好的Swin Transformer模型:
```python
import torch
import torchvision.models as models
# Download the pre-trained Swin Transformer model
model = models.resnet18(pretrained=True)
```
4.将灰度图像输入到Swin Transformer模型中进行分类。我们可以使用以下代码来完成分类:
```python
# Make a prediction on the grayscale image
prediction = model(tensor_img.unsqueeze(0))
# Get the predicted class index
predicted_class = prediction.argmax().item()
```
此步骤中,我们将张量放入unsqueeze(0)中以创建批次大小为1的虚拟批次。使用argmax函数获取预测输出的类索引。
阅读全文
相关推荐


















