real_normal = real_normal.expand(-1, self.N)
时间: 2024-04-25 22:21:58 浏览: 167
这行代码是在扩展张量`real_normal`的维度。通过调用`expand(-1, self.N)`方法,将`real_normal`张量在第一个维度上进行扩展,使其形状变为`(-1, self.N)`。这样做的效果是将`real_normal`的行数保持不变,但是列数变为`self.N`倍。扩展后的张量被赋值给变量`real_normal`。
相关问题
def forward(self, state): a = torch.tanh(self.l1(state.float())) a = self.bn1(a) a = torch.tanh(self.l2(a)) a = self.bn2(a) a = torch.tanh(self.l3(a)) current_power_t = self.compute_power(a.detach()).expand(-1, 2 * self.M ** 2) / np.sqrt(self.power_t) real_normal, imag_normal = self.compute_phase(a.detach()) real_normal = real_normal.expand(-1, self.N) imag_normal = imag_normal.expand(-1, self.N) division_term = torch.cat([current_power_t, real_normal, imag_normal], dim=1) return self.max_action * a / division_term逐行解释一下这段代码
这段代码是一个神经网络模型的前向传播过程,逐行解释如下:
1. `def forward(self, state):`: 定义了一个名为 forward 的函数,输入为 state(状态)。
2. `a = torch.tanh(self.l1(state.float()))`: 对输入的状态 state 进行一次全连接层操作 self.l1,并使用 tanh 函数进行激活,得到输出 a。
3. `a = self.bn1(a)`: 对输出 a 进行一次批量归一化操作 self.bn1。
4. `a = torch.tanh(self.l2(a))`: 对批量归一化后的 a 进行第二次全连接层操作 self.l2,并使用 tanh 函数进行激活,得到输出 a。
5. `a = self.bn2(a)`: 对输出 a 进行一次批量归一化操作 self.bn2。
6. `a = torch.tanh(self.l3(a))`: 对批量归一化后的 a 进行第三次全连接层操作 self.l3,并使用 tanh 函数进行激活,得到输出 a。
7. `current_power_t = self.compute_power(a.detach()).expand(-1, 2 * self.M ** 2) / np.sqrt(self.power_t)`: 调用 self.compute_power 方法计算出当前状态下的电力值 current_power_t,并将其扩展成一个大小为 (-1, 2 * self.M ** 2) 的张量,然后除以 np.sqrt(self.power_t)。
8. `real_normal, imag_normal = self.compute_phase(a.detach())`: 调用 self.compute_phase 方法计算出当前状态下的相角值 real_normal 和 imag_normal。
9. `real_normal = real_normal.expand(-1, self.N)`: 将相角值 real_normal 扩展成一个大小为 (-1, self.N) 的张量。
10. `imag_normal = imag_normal.expand(-1, self.N)`: 将相角值 imag_normal 扩展成一个大小为 (-1, self.N) 的张量。
11. `division_term = torch.cat([current_power_t, real_normal, imag_normal], dim=1)`: 将 current_power_t、real_normal 和 imag_normal 沿着列方向拼接起来,形成一个大小为 (-1, 2 * self.M ** 2 + 2 * self.N) 的张量 division_term。
12. `return self.max_action * a / division_term`: 将输出 a 乘以一个最大动作值 self.max_action,并将其除以 division_term,得到最终的输出结果。
def forward(self, state): a = torch.tanh(self.l1(state.float())) # Apply batch normalization to the each hidden layer's input a = self.bn1(a) a = torch.tanh(self.l2(a)) a = self.bn2(a) a = torch.tanh(self.l3(a)) # Normalize the transmission power and phase matrix current_power_t = self.compute_power(a.detach()).expand(-1, 2 * self.M ** 2) / np.sqrt(self.power_t) real_normal, imag_normal = self.compute_phase(a.detach()) real_normal = real_normal.expand(-1, self.N) imag_normal = imag_normal.expand(-1, self.N) division_term = torch.cat([current_power_t, real_normal, imag_normal], dim=1) return self.max_action * a / division_term
这段代码是一个用于无线通信的深度强化学习模型的前向传播函数。它接收一个状态变量 state,并将其输入到三个全连接层中,每个层都使用了批量归一化和双曲正切函数作为激活函数。然后,它使用了一些方法来规范化传输功率和相位矩阵,并将它们连接起来,最后将最终的输出乘以一个最大动作值以得到动作。这个模型的目标是学习如何在无线信道中选择最佳的传输功率和相位矩阵,以最大化信道容量。
阅读全文