python计算蛋白质序列的KNN得分
时间: 2023-06-29 13:15:36 浏览: 107
前面已经给出了计算 KNN 得分的 Python 实现,这里再给出一个完整的示例,包括读取蛋白质序列数据和计算 KNN 得分:
```python
import numpy as np
def knn_encode(protein_seq, k=3):
"""
K-nearest neighbor coding for protein sequences.
Args:
protein_seq: str, the protein sequence.
k: int, the parameter k for KNN encoding.
Returns:
A numpy array with length 20*k.
"""
amino_acids = 'ACDEFGHIKLMNPQRSTVWY'
aa_map = {aa: i for i, aa in enumerate(amino_acids)}
n = len(protein_seq)
features = np.zeros((n, 20))
for i, aa in enumerate(protein_seq):
if aa in aa_map:
features[i, aa_map[aa]] = 1
encoded = np.zeros(20*k)
for i in range(n):
if i >= k:
knn_indices = np.argsort(-np.sum(features[i-k:i, :], axis=0))[:k]
elif i < k:
knn_indices = np.argsort(-np.sum(features[:i, :], axis=0))[:k]
else: # i < k and i >= n - k
knn_indices = np.argsort(-np.sum(features[i-k:i, :], axis=0))[:k]
encoded[knn_indices + i*20] = 1
return encoded
def knn_score(seq1, seq2, k=3):
"""
Calculate the KNN score between two protein sequences.
Args:
seq1: str, the first protein sequence.
seq2: str, the second protein sequence.
k: int, the parameter k for KNN encoding.
Returns:
A float value representing the KNN score.
"""
encoded1 = knn_encode(seq1, k=k)
encoded2 = knn_encode(seq2, k=k)
distance = np.sum(np.abs(encoded1 - encoded2))
return distance
# 读取蛋白质序列数据
with open('protein_sequences.txt') as f:
sequences = f.read().splitlines()
# 计算任意两个序列之间的 KNN 得分
n = len(sequences)
knn_scores = np.zeros((n, n))
for i in range(n):
for j in range(i+1, n):
score = knn_score(sequences[i], sequences[j])
knn_scores[i, j] = score
knn_scores[j, i] = score
# 输出 KNN 得分矩阵
print(knn_scores)
```
其中,`protein_sequences.txt` 是包含多个蛋白质序列的文本文件,每行一个序列。通过将每个序列与其他序列计算 KNN 得分,可以得到一个 KNN 得分矩阵,其中第 i 行第 j 列的值为第 i 个序列和第 j 个序列之间的 KNN 得分。
阅读全文