图像分割常用评价指标DSC、Hausdorff_95、IOU、PPV
时间: 2023-10-03 10:07:12 浏览: 814
图像分割常用评价指标包括DSC(Dice相似系数)、Hausdorff_95、IOU(Jaccard指数)和PPV(阳性预测值)。
DSC是一种集合相似度度量指标,用于计算两个样本的相似度,其值的范围在0到1之间,最好的分割结果对应DSC值为1,最差的分割结果对应DSC值为0。\[3\]
Hausdorff_95是指Hausdorff距离的95th百分位数,Hausdorff距离是一种衡量两个集合之间的相似度的指标,其计算方法是找到一个集合中的点到另一个集合中的最近点的最大距离。Hausdorff_95表示在所有距离中,有95%的距离小于等于该值。\[1\]
IOU是指交并比(Jaccard指数),用于衡量两个集合的重叠程度。它是通过计算两个集合的交集与并集之间的比值来得到的,其值的范围在0到1之间,值越接近1表示重叠程度越高。\[2\]
PPV是指阳性预测值(Positive Predictive Value),也称为准确率。它是指在所有被预测为阳性的样本中,实际为阳性的比例。\[2\]
这些评价指标在图像分割任务中被广泛应用,可以帮助评估分割算法的性能和准确度。
#### 引用[.reference_title]
- *1* *2* [科研作图-常用的图像分割指标 (Dice, Iou, Hausdorff) 及其计算](https://blog.csdn.net/kksimida/article/details/129643885)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [[pytorch] Unet医学分割 代码详解](https://blog.csdn.net/qq_38736504/article/details/124003427)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)