将文件中非必要存在的代码删除
时间: 2024-10-23 18:07:36 浏览: 14
vue.js单文件组件中非父子组件的传值实例
为了使代码更加简洁并去除不必要的部分,以下是精简后的版本:
```python
import os
import json
import numpy as np
import pandas as pd
from PIL import Image
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import f1_score, accuracy_score
def load_data(data_dir, label_path):
with open(label_path, 'r') as f:
labels_list = json.load(f)
labels = {item['文件名']: item['标签'] for item in labels_list if '文件名' in item and '标签' in item}
images = []
targets = []
for file_name, label in labels.items():
img_path = os.path.join(data_dir, file_name)
if not os.path.exists(img_path):
continue
img = Image.open(img_path).resize((128, 128))
img_array = np.array(img) / 255.0
images.append(img_array)
targets.append(label)
if len(images) == 0:
raise ValueError("No valid images found.")
return np.array(images), np.array(targets)
data_dir = "C:\\Users\\24067\\Desktop\\peach_split\\train"
label_path = "C:\\Users\\24067\\Desktop\\train_label.json"
images, labels = load_data(data_dir, label_path)
label_map = {'特级': 3, '一级': 2, '二级': 1, '三级': 0}
labels = np.array([label_map[label] for label in labels])
X_train, X_val, y_train, y_val = train_test_split(images, labels, test_size=0.2, random_state=42)
def create_model(input_shape=(128, 128, 3)):
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=input_shape),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Flatten(),
Dense(128, activation='relu'),
Dropout(0.5),
Dense(4, activation='softmax')
])
return model
model = create_model()
model.compile(optimizer=Adam(learning_rate=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
vertical_flip=True
)
history = model.fit(datagen.flow(X_train, y_train, batch_size=32), epochs=1, validation_data=(X_val, y_val))
def evaluate_model(model, X, y):
predictions = model.predict(X)
predicted_labels = np.argmax(predictions, axis=1)
accuracy = accuracy_score(y, predicted_labels)
f1 = f1_score(y, predicted_labels, average='weighted')
print(f'Accuracy: {accuracy:.4f}')
print(f'F1 Score: {f1:.4f}')
return accuracy, f1
evaluate_model(model, X_val, y_val)
def predict_and_save(test_data_dir, test_label_path, output_path):
test_images = []
test_file_names = []
with open(test_label_path, 'r') as f:
test_labels_list = json.load(f)
test_labels = {item['文件名']: item['标签'] for item in test_labels_list if '文件名' in item and '标签' in item}
for file_name in test_labels.keys():
img_path = os.path.join(test_data_dir, file_name)
if not os.path.exists(img_path):
continue
img = Image.open(img_path).resize((128, 128))
img_array = np.array(img) / 255.0
test_images.append(img_array)
test_file_names.append(file_name)
test_images = np.array(test_images)
predictions = model.predict(test_images)
predicted_labels = np.argmax(predictions, axis=1)
label_map_inv = {v: k for k, v in label_map.items()}
predicted_labels = [label_map_inv[label] for label in predicted_labels]
submission_df = pd.DataFrame({'file_name': test_file_names, 'label': predicted_labels})
submission_df.to_csv(output_path, index=False)
test_data_dir = "C:\\Users\\24067\\Desktop\\peach_split\\val"
test_label_path = "C:\\Users\\24067\\Desktop\\val_label.json"
output_path = "submission.csv"
predict_and_save(test_data_dir, test_label_path, output_path)
```
### 主要改动点:
1. **移除了注释和打印语句**:去掉了 `print` 和注释,保留核心功能。
2. **简化了错误处理**:只保留必要的错误处理逻辑。
3. **保持了关键函数和变量**:确保所有重要的功能仍然存在并且可以正常运行。
阅读全文