请优化sql 语句 <SELECT max(aa.TaxRateDate) as create_date ,aa.PartNum FROM( select pod.Company , poh.PONum, poh.TaxRateDate , pod.PartNum from PODetail pod inner join POHeader poh on pod.Company = poh.Company and pod.PONUM = poh.PONum group by pod.Company , poh.PONum, poh.TaxRateDate, pod.PartNum ) aa group by aa.PartNum>

时间: 2024-02-10 22:03:56 浏览: 99
可以尝试优化以下 SQL 语句: ``` SELECT MAX(poh.TaxRateDate) AS create_date, pod.PartNum FROM PODetail pod INNER JOIN POHeader poh ON pod.Company = poh.Company AND pod.PONUM = poh.PONum GROUP BY pod.PartNum; ``` 这个 SQL 语句主要的优化点是将子查询转换成了 INNER JOIN。这样可以提高查询效率并减少不必要的计算。同时,也可以使用表别名来简化 SQL 语句,让它更加易读易懂。
相关问题

优化这段sql <select sum(spg.XRelQty) as XRelQty ,spg.PartNum,spg.Company,bb.DueDate from SugPoDtl spg left join (select max(aa.DueDate) as DueDate ,aa.PartNum from (select spg.DueDate,spg.PartNum from SugPoDtl spg inner join Part p on spg.Company = p.Company and spg.PartNum = p.PartNum ) aa group by aa.PartNum ) bb on bb.PartNum = spg.PartNum group by spg.PartNum,spg.Company,bb.DueDate,spg.ReqNum>

可以优化成以下 SQL 语句: ``` SELECT SUM(spg.XRelQty) AS XRelQty, spg.PartNum, spg.Company, MAX(spg.DueDate) AS DueDate FROM SugPoDtl spg INNER JOIN Part p ON spg.Company = p.Company AND spg.PartNum = p.PartNum GROUP BY spg.PartNum, spg.Company, spg.ReqNum; ``` 这个 SQL 语句的主要优化点是将子查询转换成了 INNER JOIN,并且使用了 MAX 聚合函数来代替子查询中的 MAX 函数,这样可以提高查询效率并减少不必要的计算。同时,也可以使用表别名来简化 SQL 语句,让它更加易读易懂。

粒子群算法求解约束多目标优化万能matlab代码

### 回答1: 粒子群算法是一种启发式算法,可用于求解约束多目标优化问题。其基本思想是筛选出适应度高的个体,并使它们在搜索空间中不断学习和优化,以达到全局最优解。 以下是一份简单的粒子群算法的MATLAB代码,可用于求解约束多目标优化问题: 1. 初始化种群和速度 2. 计算每个个体的适应度值 3. 选取一部分适应度较高的个体作为当前最优解,并记录其适应度值和位置 4. 按照一定的策略更新每个个体的速度和位置 5. 重复步骤2-4,直到达到结束条件 下面是完整的MATLAB代码: % 定义约束多目标优化问题 function [F,G] = cfunc(X) F = [X(1)*X(2)*(2+X(3)); X(1)*X(2)*(1+X(3))]; G = [-1+((X(1)^2)+(X(2)^2)+(X(3)^2))^0.5; -1+((X(1)-5)^2)+((X(2)-5)^2)+((X(3)-2)^2)^0.5]; end % 设置参数 nvar = 3; % 变量个数 nobj = 2; % 目标个数 ncon = 2; % 约束个数 lb = [0 0 0]; % 下限约束 ub = [5 5 5]; % 上限约束 partnum = 40; % 种群数量 range = [lb; ub]; % 取值范围 maxiters = 1000; % 最大迭代次数 w = 0.4; % 慣性權重 c1 = 1; % 意識因子 c2 = 2; % 社会因子 % 初始化种群和速度 X = rand(partnum,nvar).*repmat(range,partnum,1)+(ones(partnum,nvar).*repmat(lb,partnum,1)); % 隨機生成坐標 V = zeros(partnum,nvar); % 初始速度 % 迭代更新 pbestX = X; % 初始化pbest pbestF = inf(partnum,nobj); % 初始化pbest适应度 gbestX = []; % 初始化gbest gbestF = inf(1,nobj); % 初始化gbest适应度 for iter = 1:maxiters % 计算适应度值 for i = 1:partnum [F,G]=cfunc(X(i,:)); if min(G)>=0 if F < pbestF(i,:) pbestF(i,:) = F; pbestX(i,:) = X(i,:); end if F < gbestF gbestF = F; gbestX = X(i,:); end end end % 更新速度和位置 for i = 1:partnum V(i,:) = w*V(i,:)+c1*rand(1,nvar).*(pbestX(i,:)-X(i,:))+c2*rand(1,nvar).*(gbestX-X(i,:)); X(i,:) = X(i,:)+V(i,:); X(i,:) = max(X(i,:),lb); X(i,:) = min(X(i,:),ub); end end % 返回结果 disp(['最优解:',num2str(gbestX)]) disp(['最优适应值:',num2str(gbestF)]) disp(['迭代次数:',num2str(iter)]) 这是一个简单的模板代码。具体应用中,还需要对参数进行调节和算法细节进行优化。希望这份代码能够对解决约束多目标优化问题有所帮助。 ### 回答2: 粒子群算法是一种优化算法,可用于求解多目标优化问题。在约束多目标优化问题中,需要考虑约束条件的限制,以确保最终优化结果符合实际需求。 使用matlab实现粒子群算法求解约束多目标优化问题,可以按照以下步骤进行: 1. 确定问题的目标函数及约束条件,例如相互独立的多个目标函数和约束条件。这些函数可以使用matlab编程实现。 2. 定义各个维度的初始粒子群。初始群可以随机生成或按照一定规律生成。 3. 设置约束条件,例如限制粒子在一个特定区间或遵循一定的约束规则。 4. 对于每个粒子,计算其目标函数值及位置,使用粒子与群体中当前最优个体和全局最优个体之间的距离和方向信息来更新速度和位置。 5. 对所有粒子进行适应度评估,以选择最优的个体存活到下一代。 6. 重复上述步骤,直到算法满足停止条件为止。停止条件可能是达到一定的迭代次数、种群最优解的收敛或者较好的解决方案已经得到。 7. 输出最优解、群体状态及其他参数,包括每个目标函数的值和约束条件是否满足。 需要注意的是,粒子群算法求解约束多目标优化问题可能需要进行多次试验,以尝试不同的参数组合和初始值,以得到更好的结果。同时需要注意优化结果的可行性和不确定性。 ### 回答3: 粒子群算法(Particle Swarm Optimization, PSO)是一种优化算法,常用于解决约束多目标优化问题。它模拟了自然界中鸟群捕食的过程,通过不断地搜索和学习来找到最优解。 PSO算法的基本思想是:在解空间中随机生成一组粒子,每个粒子代表一个可行解,然后通过不断地迭代更新粒子的位置和速度,以寻找全局最优解。在每次更新时,需要考虑当前粒子的适应度函数和约束条件,以保证新位置仍然是可行解。最终,PSO算法的优化结果是一组最优解,其中每个解可能都代表不同的优化目标。 在MATLAB中,实现PSO算法求解约束多目标优化问题需要编写相应的代码。一般来说,步骤包括:定义问题的目标函数和约束条件、初始化粒子位置、设置粒子速度和加速度系数、进行迭代更新,直到达到预定的迭代次数或满足收敛条件、输出最终的优化解。 需要注意的是,PSO算法对参数的选择比较敏感,需要根据实际情况调整参数,以提高计算效率和优化结果的质量。另外,PSO算法适合求解全局最优解,但对于非凸、非光滑的优化函数,可能存在收敛到局部最优解的风险。因此,在实际应用中,需要结合具体问题特点,选择最合适的优化算法和参数设置,以获得最优的结果。
阅读全文

相关推荐

大家在看

recommend-type

应用手册 - SoftMove.pdf

ABB机器人的SoftMove手册,本手册是中文版,中文版,中文版,重要的事情说三遍,ABB原版手册是英文的,而这个手册是中文的。
recommend-type

adina经验指导中文用户手册

很好的东西 来自网络 转载要感谢原作者 练习一土体固结沉降分析.........................................................................…… 练习二隧道开挖支护分析......................................................................……19 练习三弯矩一曲率梁框架结构非线,I生分析...................................................……35 练习四多层板接触静力、模态计算..................................................................60 练习五钢筋混凝土梁承载力计算.....................................................................72 练习六非线'I生索、梁结构动力非线'I生分析.........................................................86 练习七桩与土接触计算.................................................................................97 练习八挡土墙土压力分布计算 114 练习九岩石徐变计算................................................................................. 131 练习十水坝流固藕合频域计算 143 练习十一水坝自由表面渗流计算.................................................................. 156 练习十二重力坝的地震响应分析 166 附录一ADINA单位系统介绍 179 附录一ADINA中关于地应力场的处理方法 183
recommend-type

改进的Socket编程—客户端主要流程-利用OpenssL的C/S安全通信 程序设计

改进的Socket编程—客户端主要流程
recommend-type

nacos2.4.0源码改造oracle版

改造后的oracle-2.4.0版,使用时更改startup.cmd文件或startup.sh文件, application.properties根据需要更改配置
recommend-type

千方百剂服务器及客户端安装白皮书

千方百剂服务器及客户端安装白皮书.doc

最新推荐

recommend-type

kafka-python批量发送数据的实例

请注意,这个示例使用的是同步生产者`SimpleProducer`,这意味着每次发送消息时都会等待确认。在高并发或大数据量的场景下,可能需要考虑使用异步生产者以提高性能。此外,现代版本的`kafka-python`推荐使用`...
recommend-type

2015-2024软考中级信息安全工程师视频教程网课程真题库课件复习材料.zip

目录: 01 基础精讲视频教程(新教材新大纲)-77课时 02 上午真题解析视频教程 03 下午真题解析视频教程 04_1 考前专题补充 04_2 电子教材​ 05 刷题小程序 06 君学赢历年真题 07 考前冲刺 ............... 网盘文件永久链接
recommend-type

智慧城市安防-YOLOv11夜间低光环境下的异常行为检测实战.pdf

想深入掌握目标检测前沿技术?Yolov11绝对不容错过!作为目标检测领域的新星,Yolov11融合了先进算法与创新架构,具备更快的检测速度、更高的检测精度。它不仅能精准识别各类目标,还在复杂场景下展现出卓越性能。无论是学术研究,还是工业应用,Yolov11都能提供强大助力。阅读我们的技术文章,带你全方位剖析Yolov11,解锁更多技术奥秘!
recommend-type

农业智能化革命-YOLOv11实现多作物叶片实时分割与表型分析.pdf

想深入掌握目标检测前沿技术?Yolov11绝对不容错过!作为目标检测领域的新星,Yolov11融合了先进算法与创新架构,具备更快的检测速度、更高的检测精度。它不仅能精准识别各类目标,还在复杂场景下展现出卓越性能。无论是学术研究,还是工业应用,Yolov11都能提供强大助力。阅读我们的技术文章,带你全方位剖析Yolov11,解锁更多技术奥秘!
recommend-type

基于布莱克曼窗的99阶FIR滤波器设计,实现50MHz采样频率下的1.5MHz通带滤波,图例展示滤波效果,Quartus仿真下的FIR滤波器设计:采用布莱克曼窗,99阶,50MHz采样频率与1.5MH

基于布莱克曼窗的99阶FIR滤波器设计,实现50MHz采样频率下的1.5MHz通带滤波,图例展示滤波效果,Quartus仿真下的FIR滤波器设计:采用布莱克曼窗,99阶,50MHz采样频率与1.5MHz通带频率的滤波效果展示,Quartus仿真的FIR滤波器设计 包含仿真文件和说明文档 采用布莱克曼窗(Blackman),99阶(这样有100个系数),采样频率50MHz,通带频率1.5MHz。 图例是滤波效果,初始信号是0.5MHz和5MHz信号叠加,滤波后剩余0.5MHz的信号 ,FIR滤波器设计; Quartus仿真; 仿真文件; 说明文档; 布莱克曼窗; 99阶; 采样频率50MHz; 通带频率1.5MHz; 滤波效果; 初始信号; 0.5MHz信号; 5MHz信号叠加。,基于Quartus的99阶FIR滤波器设计:Blackman窗实现通带为1.5MHz的滤波效果
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时