# lr max_epoch = 30 warmup_epochs = 5 warmup_start_lr = 0.0005 cosine_base_lr = 0.001 iter_step = True
时间: 2024-02-16 17:01:44 浏览: 73
这似乎是一些训练神经网络时使用的超参数设置,可以解读为:
- 学习率(learning rate)的最大值为0.001;
- 训练的最大轮数为30轮;
- 训练前5轮使用渐进式学习率(warm-up learning rate),起始学习率为0.0005;
- 从第6轮开始使用余弦退火学习率(cosine annealing learning rate)策略,学习率的值在0.0005到0.001之间变化;
- 每次迭代时更新学习率(iterative learning rate)。
需要注意的是,这些超参数的选择可能会因具体任务而异,需要根据实验结果进行调整。
相关问题
# 3. Construct solver. lr = CustomWarmupCosineDecay(warmup_start_lr=warmup_start_lr, warmup_epochs=warmup_epochs, cosine_base_lr=cosine_base_lr, max_epoch=max_epoch, num_iters=1)
这是一个构建优化器(solver)的代码段,其中使用了自定义的学习率调度器(CustomWarmupCosineDecay),可以解读为:
- 定义一个自定义的学习率调度器,其参数包括:学习率的初始值(warmup_start_lr)、预热期的epoch数(warmup_epochs)、余弦退火策略中的基础学习率(cosine_base_lr)、训练的最大epoch数(max_epoch)和每个epoch中的迭代次数(num_iters);
- 调用这个学习率调度器,生成一个学习率lr对象,用于优化器的构建。
需要注意的是,学习率调度器的选择和参数设置也会对模型的训练和性能产生重要影响。在这里,使用了一种结合了学习率预热和余弦退火两种策略的调度器。预热期是为了在训练开始时,让学习率从较小的值逐渐增大,以避免由于初始学习率过大而导致的训练不稳定。而余弦退火策略则是为了在训练过程中,让学习率逐渐减小,以避免过拟合和局部最优解。
class CosineScheduler: def __init__(self, max_update, base_lr=0.01, final_lr=0, warmup_steps=0, warmup_begin_lr=0): self.base_lr_orig = base_lr self.max_update = max_update self.final_lr = final_lr self.warmup_steps = warmup_steps self.warmup_begin_lr = warmup_begin_lr self.max_steps = self.max_update - self.warmup_steps def get_warmup_lr(self, epoch): increase = (self.base_lr_orig - self.warmup_begin_lr) \ * float(epoch) / float(self.warmup_steps) return self.warmup_begin_lr + increase def __call__(self, epoch): if epoch < self.warmup_steps: return self.get_warmup_lr(epoch) if epoch <= self.max_update: self.base_lr = self.final_lr + ( self.base_lr_orig - self.final_lr) * (1 + math.cos( math.pi * (epoch - self.warmup_steps) / self.max_steps)) / 2 return self.base_lr scheduler = CosineScheduler(max_update=20, base_lr=0.3, final_lr=0.01) d2l.plot(torch.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])
这段代码实现了一个余弦学习率调度程序,可以在训练神经网络时调整学习率。它包括一个 CosineScheduler 类和一个调用方法。在调用方法中,根据给定的 epoch 值,如果 epoch 值小于预热步数 warmup_steps,则返回预热学习率,否则返回余弦学习率。余弦学习率的计算是通过余弦函数实现的,其中初始学习率 base_lr 逐渐减小到最终学习率 final_lr,然后再逐渐增加回去。该程序还可以设置预热开始学习率 warmup_begin_lr 和预热步数 warmup_steps,并且可以根据最大迭代次数 max_update 计算出最大步数 max_steps。最后,该程序可以通过调用 plot 方法来可视化学习率的变化情况。
阅读全文