# lr max_epoch = 30 warmup_epochs = 5 warmup_start_lr = 0.0005 cosine_base_lr = 0.001 iter_step = True

时间: 2024-02-16 16:01:44 浏览: 23
这似乎是一些训练神经网络时使用的超参数设置,可以解读为: - 学习率(learning rate)的最大值为0.001; - 训练的最大轮数为30轮; - 训练前5轮使用渐进式学习率(warm-up learning rate),起始学习率为0.0005; - 从第6轮开始使用余弦退火学习率(cosine annealing learning rate)策略,学习率的值在0.0005到0.001之间变化; - 每次迭代时更新学习率(iterative learning rate)。 需要注意的是,这些超参数的选择可能会因具体任务而异,需要根据实验结果进行调整。
相关问题

# 3. Construct solver. lr = CustomWarmupCosineDecay(warmup_start_lr=warmup_start_lr, warmup_epochs=warmup_epochs, cosine_base_lr=cosine_base_lr, max_epoch=max_epoch, num_iters=1)

这是一个构建优化器(solver)的代码段,其中使用了自定义的学习率调度器(CustomWarmupCosineDecay),可以解读为: - 定义一个自定义的学习率调度器,其参数包括:学习率的初始值(warmup_start_lr)、预热期的epoch数(warmup_epochs)、余弦退火策略中的基础学习率(cosine_base_lr)、训练的最大epoch数(max_epoch)和每个epoch中的迭代次数(num_iters); - 调用这个学习率调度器,生成一个学习率lr对象,用于优化器的构建。 需要注意的是,学习率调度器的选择和参数设置也会对模型的训练和性能产生重要影响。在这里,使用了一种结合了学习率预热和余弦退火两种策略的调度器。预热期是为了在训练开始时,让学习率从较小的值逐渐增大,以避免由于初始学习率过大而导致的训练不稳定。而余弦退火策略则是为了在训练过程中,让学习率逐渐减小,以避免过拟合和局部最优解。

__init__(self, warmup_start_lr, warmup_epochs, cosine_base_lr, max_epoch, num_iters, last_epoch=-1, verbose=False)

这是一个深度学习中的优化器的初始化函数,具体来说是学习率调度器的初始化函数。下面是各个参数的含义: - `warmup_start_lr`:学习率的初始值,也就是在训练初期使用的较小的学习率。 - `warmup_epochs`:表示学习率从初始值逐渐增加到正常值的过程所占用的 epoch 数量。 - `cosine_base_lr`:表示学习率下降到最小值时的值。 - `max_epoch`:表示训练的最大 epoch 数量。 - `num_iters`:表示训练过程中 batch 的数量。 - `last_epoch`:表示上一个 epoch 的数量。默认为 -1,表示从头开始训练。 - `verbose`:是否打印详细信息。默认为 False。

相关推荐

检查代码是否有错误或异常:class CosineAnnealingWarmbootingLR: def __init__(self, base_lr=0.00001, epochs=0, eta_min=0.05, steps=[], step_scale=0.8, lf=None, batchs=0, warmup_epoch=0, epoch_scale=1.0): # 初始化函数,接受一些参数 self.warmup_iters = batchs * warmup_epoch # 热身迭代次数 self.eta_min = eta_min # 最小学习率 self.iters = -1 # 当前迭代次数 self.iters_batch = -1 # 当前批次迭代次数 self.base_lr = base_lr # 初始学习率 self.step_scale = step_scale # 步长缩放因子 steps.sort() # 步长列表排序 self.steps = [warmup_epoch] + [i for i in steps if (i < epochs and i > warmup_epoch)] + [epochs] # 步长列表 self.gap = 0 # 步长间隔 self.last_epoch = 0 # 上一个 epoch self.lf = lf # 学习率函数 self.epoch_scale = epoch_scale # epoch 缩放因子 def step(self, external_iter=None): # 学习率调整函数 self.iters = 1 # 当前迭代次数 if external_iter is not None: self.iters = external_iter iters = self.iters - self.warmup_iters # 当前迭代次数减去热身迭代次数 last_epoch = self.last_epoch # 上一个 epoch scale = 1.0 # 缩放因子 for i in range(len(self.steps)-1): if (iters <= self.steps[i+1]): self.gap = self.steps[i+1] - self.steps[i] # 步长间隔 iters = iters - self.steps[i] # 当前迭代次数减去当前步长 last_epoch = self.steps[i] # 上一个 epoch if i != len(self.steps)-2: self.gap *= self.epoch_scale # 如果不是最后一个步长,乘以 epoch 缩放因子 break scale *= self.step_scale # 缩放因子乘以步长缩放因子 if self.lf is None: self.base_lr= scale * self.base_lr * ((((1 - math.cos(iters * math.pi / self.gap)) / 2) ** 1.0) * (1.0 - self.eta_min) + self.eta_min) # 计算学习率 else: self.base_lr = scale * self.base_lr * self.lf(iters, self.gap) # 使用学习率函数计算学习率 self.last_epoch = last_epoch # 更新上一个 epoch return self.base_lr # 返回学习率 def step_batch(self): # 批次学习率调整函数 self.iters_batch = 1 # 当前批次迭代次数 if self.iters_batch < self.warmup_iters: rate = self.iters_batch / self.warmup_iters # 计算学习率缩放因子 self.base_lr= self.base_lr * rate # 缩放学习率 return self.base_lr # 返回学习率 else: return None # 如果已经完成热身,返回 None

代码解释并给每行代码添加注释:class CosineAnnealingWarmbootingLR: def __init__(self, optimizer, epochs=0, eta_min=0.05, steps=[], step_scale=0.8, lf=None, batchs=0, warmup_epoch=0, epoch_scale=1.0): self.warmup_iters = batchs * warmup_epoch self.optimizer = optimizer self.eta_min = eta_min self.iters = -1 self.iters_batch = -1 self.base_lr = [group['lr'] for group in optimizer.param_groups] self.step_scale = step_scale steps.sort() self.steps = [warmup_epoch] + [i for i in steps if (i < epochs and i > warmup_epoch)] + [epochs] self.gap = 0 self.last_epoch = 0 self.lf = lf self.epoch_scale = epoch_scale for group in optimizer.param_groups: group.setdefault('initial_lr', group['lr']) def step(self, external_iter = None): self.iters += 1 if external_iter is not None: self.iters = external_iter iters = self.iters + self.last_epoch scale = 1.0 for i in range(len(self.steps)-1): if (iters <= self.steps[i+1]): self.gap = self.steps[i+1] - self.steps[i] iters = iters - self.steps[i] if i != len(self.steps)-2: self.gap += self.epoch_scale break scale *= self.step_scale if self.lf is None: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * ((((1 + math.cos(iters * math.pi / self.gap)) / 2) ** 1.0) * (1.0 - self.eta_min) + self.eta_min) else: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * self.lf(iters, self.gap) return self.optimizer.param_groups[0]['lr'] def step_batch(self): self.iters_batch += 1 if self.iters_batch < self.warmup_iters: rate = self.iters_batch / self.warmup_iters for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = lr * rate return self.optimizer.param_groups[0]['lr'] else: return None

将代码转化为paddlepaddle框架可以使用的代码:class CosineAnnealingWarmbootingLR: # cawb learning rate scheduler: given the warm booting steps, calculate the learning rate automatically def __init__(self, optimizer, epochs=0, eta_min=0.05, steps=[], step_scale=0.8, lf=None, batchs=0, warmup_epoch=0, epoch_scale=1.0): self.warmup_iters = batchs * warmup_epoch self.optimizer = optimizer self.eta_min = eta_min self.iters = -1 self.iters_batch = -1 self.base_lr = [group['lr'] for group in optimizer.param_groups] self.step_scale = step_scale steps.sort() self.steps = [warmup_epoch] + [i for i in steps if (i < epochs and i > warmup_epoch)] + [epochs] self.gap = 0 self.last_epoch = 0 self.lf = lf self.epoch_scale = epoch_scale # Initialize epochs and base learning rates for group in optimizer.param_groups: group.setdefault('initial_lr', group['lr']) def step(self, external_iter = None): self.iters += 1 if external_iter is not None: self.iters = external_iter # cos warm boot policy iters = self.iters + self.last_epoch scale = 1.0 for i in range(len(self.steps)-1): if (iters <= self.steps[i+1]): self.gap = self.steps[i+1] - self.steps[i] iters = iters - self.steps[i] if i != len(self.steps)-2: self.gap += self.epoch_scale break scale *= self.step_scale if self.lf is None: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * ((((1 + math.cos(iters * math.pi / self.gap)) / 2) ** 1.0) * (1.0 - self.eta_min) + self.eta_min) else: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * self.lf(iters, self.gap) return self.optimizer.param_groups[0]['lr'] def step_batch(self): self.iters_batch += 1 if self.iters_batch < self.warmup_iters: rate = self.iters_batch / self.warmup_iters for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = lr * rate return self.optimizer.param_groups[0]['lr'] else: return None

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步