yolov8添加注意力机制CBAM
时间: 2023-08-31 17:10:17 浏览: 230
CBAM注意力机制代码,以及如何对yolov5进行改进
您好!对于在YOLOv8中添加注意力机制CBAM,可以按照以下步骤进行:
1. 导入必要的模块和库:
```python
import torch
import torch.nn as nn
```
2. 定义CBAM模块:
```python
class CBAM(nn.Module):
def __init__(self, channels, reduction=16):
super(CBAM, self).__init__()
self.channels = channels
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0)
self.sigmoid_channel = nn.Sigmoid()
self.conv_after_concat = nn.Conv2d(2, 1, kernel_size=3, stride=1, padding=1)
self.sigmoid_spatial = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu(self.fc1(self.max_pool(x))))
channel_out = self.sigmoid_channel(avg_out + max_out)
spatial_out = torch.cat([avg_out, max_out], dim=1)
spatial_out = self.conv_after_concat(spatial_out)
spatial_out = self.sigmoid_spatial(spatial_out)
return x * channel_out * spatial_out
```
3. 在YOLOv8的特征提取部分使用CBAM模块:
```python
class YOLOv8(nn.Module):
def __init__(self):
super(YOLOv8, self).__init__()
# ...
self.cbam = CBAM(channels=XX)
# ...
def forward(self, x):
# ...
x = self.cbam(x)
# ...
return x
```
请注意,上述代码中的`XX`需要替换为适合您的网络的通道数。这是一个简单的示例,您还可以根据需要进行更改和调整。
希望能对您有所帮助!如果您有任何疑问,请随时提问。
阅读全文