AVGPooling
时间: 2023-10-09 22:06:21 浏览: 113
视频音频播放AVPlay
平均池化(Average Pooling)是一种计算图像区域平均值作为该区域池化后的值的操作。它保留了整体数据的特征,并能突出背景的信息。在平均池化中,每个区域的激活贡献相等,这可以显著降低整体区域特征的强度。全局平均池化(Global Average Pooling,GAP)是一种特殊的平均池化,它对整个特征图进行平均池化操作。\[1\]
在GPU上计算平均池化时,由于有大量的计算单元,使用队列反而会更低效。因此,常见的做法是对于每一个n,c维度上的池化单元,都使用单独的一个线程去负责实现。这样可以充分利用GPU上的计算资源。\[2\]
在平均池化中,权重与相应的激活值一起用作非线性变换。较高的激活比较低的激活占更多的主导地位。这是因为大多数池化操作都是在高维的特征空间中执行的,突出显示具有更大效果的激活比简单地选择最大值是一种更平衡的方法。具体的步骤是计算权重Wi,其中Wi是所有邻域内激活值加权求和的结果。然后,通过将权重与输入进行元素相乘,并进行平均池化操作,得到最终的池化结果。\[3\]
下面是一个示例代码,展示了如何实现平均池化操作:
```python
def soft_pool2d(x, kernel_size=2, stride=None, force_inplace=False):
if x.is_cuda and not force_inplace:
return CUDA_SOFTPOOL2d.apply(x, kernel_size, stride)
kernel_size = _pair(kernel_size)
if stride is None:
stride = kernel_size
else:
stride = _pair(stride)
# 获取输入的大小
_, c, h, w = x.size()
# 创建每个元素的指数值和:Tensor \[b x 1 x h x w\]
e_x = torch.sum(torch.exp(x), dim=1, keepdim=True)
# 对输入应用掩码并进行池化,并计算指数和
# Tensor: \[b x c x h x w\] -> \[b x c x h' x w'\]
return F.avg_pool2d(x.mul(e_x), kernel_size, stride=stride).mul_(sum(kernel_size)).div_(F.avg_pool2d(e_x, kernel_size, stride=stride).mul_(sum(kernel_size)))
```
这段代码展示了如何使用PyTorch实现平均池化操作。它首先计算每个元素的指数和,然后将输入与指数和进行元素相乘,并进行平均池化操作,最后得到最终的池化结果。
#### 引用[.reference_title]
- *1* *3* [池化操作average pooling、max pooling、SoftPool、Spatial Pyramid Pooling(SPP)](https://blog.csdn.net/weixin_42764932/article/details/112515715)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [关于maxpooling和avgpooling](https://blog.csdn.net/digitalbiscuitz/article/details/98481405)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文