plt.boxplot(x=train_data.values,labels=train_data.columns) 3 plt.hlines([-7.5, 7.5], 0, 40, colors='r') 4 plt.show() 5 6 train_data = train_data[train_data['V9']>-7.5] 7 train_data.describe() 8 9 from sklearn import preprocessing 10 11 features_columns = [col for col in train_data.columns if col not in ['target']] 12 13 min_max_scaler = preprocessing.MinMaxScaler() 14 15 min_max_scaler = min_max_scaler.fit(train_data[features_columns]) 16 17 train_data_scaler = min_max_scaler.transform(train_data[features_columns]) 18 test_data_scaler = min_max_scaler.transform(test_data[features_columns]) 19 20 train_data_scaler = pd.DataFrame(train_data_scaler) 21 train_data_scaler.columns = features_columns 22 23 test_data_scaler = pd.DataFrame(test_data_scaler) 24 test_data_scaler.columns = features_columns 25 26 train_data_scaler['target'] = train_data['target'] 27 28 train_data 29 30 mcorr=mcorr.abs() 31 numerical_corr=mcorr[mcorr['target']>0.1]['target'] 32 print(numerical_corr.sort_values(ascending=False))解释每一行代码的意思

时间: 2024-01-18 13:03:04 浏览: 28
好的,我来解释每一行代码的意思: 1. `plt.boxplot(x=train_data.values,labels=train_data.columns)`: 绘制箱线图,用于检测是否存在异常值; 2. `plt.hlines([-7.5, 7.5], 0, 40, colors='r')`: 在箱线图上绘制两条水平线,用于标记异常值的阈值; 3. `train_data = train_data[train_data['V9']>-7.5]`: 去除训练数据中V9列中小于-7.5的异常值; 4. `train_data.describe()`: 输出训练数据的统计信息,包括均值、标准差、最小值、最大值等; 5. `from sklearn import preprocessing`: 导入preprocessing模块,用于数据预处理; 6. `features_columns = [col for col in train_data.columns if col not in ['target']]`: 提取除了目标变量之外的特征列,存储在features_columns变量中; 7. `min_max_scaler = preprocessing.MinMaxScaler()`: 创建MinMaxScaler对象,用于对特征数据进行归一化处理; 8. `min_max_scaler = min_max_scaler.fit(train_data[features_columns])`: 对MinMaxScaler对象进行拟合,计算出归一化所需的最大值和最小值; 9. `train_data_scaler = min_max_scaler.transform(train_data[features_columns])`: 对训练数据的特征列进行归一化处理; 10. `test_data_scaler = min_max_scaler.transform(test_data[features_columns])`: 对测试数据的特征列进行归一化处理; 11. `train_data_scaler = pd.DataFrame(train_data_scaler)`: 将归一化后的训练数据特征列转换成DataFrame格式; 12. `train_data_scaler.columns = features_columns`: 给训练数据的特征列添加列名; 13. `test_data_scaler = pd.DataFrame(test_data_scaler)`: 将归一化后的测试数据特征列转换成DataFrame格式; 14. `test_data_scaler.columns = features_columns`: 给测试数据的特征列添加列名; 15. `train_data_scaler['target'] = train_data['target']`: 将训练数据的目标变量添加到归一化后的训练数据中; 16. `train_data`: 输出训练数据的内容; 17. `mcorr=mcorr.abs()`: 计算特征之间的相关性矩阵,并对矩阵中的元素取绝对值; 18. `numerical_corr=mcorr[mcorr['target']>0.1]['target']`: 筛选出与目标变量相关性大于0.1的特征; 19. `print(numerical_corr.sort_values(ascending=False))`: 输出筛选后的特征相关性,按照相关性大小降序排列; 20. `index0 = numerical_corr.sort_values(ascending=False).index`: 获取筛选后的特征名字,并存储在index0变量中; 21. `print(train_data_scaler[index0].corr('spearman'))`: 计算筛选后的特征之间的Spearman相关系数; 22. `new_numerical=['V0', 'V2', 'V3', 'V4', 'V5', 'V6', 'V10','V11', 'V13', 'V15', 'V16', 'V18', 'V19', 'V20', 'V22','V24','V30', 'V31', 'V37']`: 将相关性较高的特征名字存储在new_numerical变量中; 23. `X=np.matrix(train_data_scaler[new_numerical])`: 将训练数据中的new_numerical列转换为矩阵格式,存储在X变量中; 24. `VIF_list=[variance_inflation_factor(X, i) for i in range(X.shape[1])]`: 计算new_numerical列之间的VIF值,存储在VIF_list变量中; 25. `VIF_list`: 输出VIF_list变量的值; 26. `pca = PCA(n_components=0.9)`: 创建PCA对象,并设置保留90%的方差; 27. `new_train_pca_90 = pca.fit_transform(train_data_scaler.iloc[:,0:-1])`: 对训练数据进行PCA降维,并保留90%的方差; 28. `new_test_pca_90 = pca.transform(test_data_scaler)`: 对测试数据进行PCA降维,并保留90%的方差; 29. `new_train_pca_90 = pd.DataFrame(new_train_pca_90)`: 将降维后的训练数据转换为DataFrame格式; 30. `new_test_pca_90 = pd.DataFrame(new_test_pca_90)`: 将降维后的测试数据转换为DataFrame格式; 31. `new_train_pca_90['target'] = train_data_scaler['target']`: 将训练数据的目标变量添加到降维后的训练数据中; 32. `new_train_pca_90.describe()`: 输出降维后的训练数据的统计信息,包括均值、标准差、最小值、最大值等。

相关推荐

实训 实训1分析学生 考试成绩特征的分布与分散情况 1.训练要点 (1)掌握pyplot的基础语法, (2)掌握饼图的绘制方法 (3)掌握箱线图的绘制方法 2.需求说明 在期末多试后,学校对学生的期来试成绩及其他特征信息进行了统计,并存为学生成绩特征关系表(student gndexix)学生成绩特征关系表共有7个特征,分别为性别、自我效能感、考试课程准备情况、数学成绩、阅读成绩、写作成绩和总成绩,其部分数据如表5-40所示。为了解学生考试总成绩的分布情况,将总成绩按0”150、150~ 200 .200 250、 250~300区间划分为“不及格”“及格”“良好”“优秀”4个等级,通过绘制饼图在看各区间学生人数比例,并通过绘制箱线图在看学生3项单科成绩的分散情况。 表5-40学生成绩特征关系表部分数据 性别 自我效能感 考试课程 准备情况 数学成绩 阅读成绩 写作成绩 总成绩 女 中 未完成 7 72 74 218 女 高 完成 6 90 88 247 女 高 未完成 90 95 )3 278 男 未完成 47 57 14 148 男 中 未完成 7 78 '5 229 3.实现步骤 (1)使用pandas库读取学生名试成绩数据。 绩分布饼图,2)将学生考试总皮绩分为4个区间,计算各区间下的学生人数, 绘制学生考试总成(3)规取学生3项单科成绩的数据,给制学生各项考试成绩分散情况箱线图,实训2(4) 分析学生考试总成绩的分布情况和3项单科成绩的分散情况

最新推荐

recommend-type

关于__Federico Milano 的电力系统分析工具箱.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

mlab-upenn 研究小组的心脏模型模拟.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

混合图像创建大师matlab代码.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

中序遍历二叉树-java版本

在Java中,实现二叉树的中序遍历同样可以通过递归来完成。中序遍历的顺序是:首先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。 在这段代码中,Node类定义了二叉树的节点,BinaryTree类包含一个指向根节点的指针和inOrder方法,用于递归地进行中序遍历。printInOrder方法调用inOrder方法并打印出遍历的结果。 在Main类中,我们创建了一个示例二叉树,并调用printInOrder方法来输出中序遍历的结果。输出应该是:4 2 5 1 3,这表示中序遍历的顺序是左子树(4),然后是根节点(2),接着是右子树的左子树(5),然后是右子树的根节点(1),最后是右子树的右子树(3)。
recommend-type

无头单向非循环链表的实现(SList.c)

无头单向非循环链表的实现(函数定义文件)
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。