TypeError: _BaseOptimizer.minimize() missing 1 required positional argument: 'var_list'
时间: 2023-09-21 19:08:25 浏览: 271
TypeError: _queue_reduction(): incompatible function arguments.
如果您使用 TensorFlow 1.x 版本构建模型并训练模型时出现 `TypeError: _BaseOptimizer.minimize() missing 1 required positional argument: 'var_list'` 错误,通常是因为在调用 `minimize` 函数时未指定 `var_list` 参数。在 TensorFlow 1.x 版本中,`minimize` 函数需要传入一个变量列表,以指定需要更新的变量。例如:
```python
import tensorflow as tf
# 定义模型和损失函数
model = tf.keras.models.Sequential([...])
loss_fn = tf.keras.losses.MeanSquaredError()
# 创建优化器和变量列表
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
var_list = model.trainable_variables
# 计算梯度并更新变量
grads_and_vars = optimizer.compute_gradients(loss_fn(model.output, y))
optimizer.apply_gradients(grads_and_vars, var_list=var_list)
```
在上面的示例中,`var_list` 参数指定了需要更新的变量列表,即模型中的所有可训练变量。如果您没有指定 `var_list` 参数,会出现 `TypeError: _BaseOptimizer.minimize() missing 1 required positional argument: 'var_list'` 错误。
如果您使用 TensorFlow 2.x 版本,则不需要指定 `var_list` 参数,因为在 TensorFlow 2.x 版本中,优化器会自动管理变量。例如:
```python
import tensorflow as tf
# 定义模型和损失函数
model = tf.keras.models.Sequential([...])
loss_fn = tf.keras.losses.MeanSquaredError()
# 创建优化器并计算梯度
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
with tf.GradientTape() as tape:
y_pred = model(x)
loss = loss_fn(y, y_pred)
grads = tape.gradient(loss, model.trainable_variables)
# 更新变量
optimizer.apply_gradients(zip(grads, model.trainable_variables))
```
在上面的示例中,优化器会自动管理变量,因此不需要指定 `var_list` 参数。
阅读全文