import torchvision.transforms as transformers 是什么意思
时间: 2023-06-08 11:03:41 浏览: 206
import torchvision.transforms as transformers 是导入 PyTorch 中 torchvision.transforms 模块,并将它重命名为 transformers,使得可以使用其中的图像处理函数进行图像预处理。
相关问题
transformers 库进行图像分割的例子
以下是使用 transformers 库进行图像分割的例子:
1. 安装必要的库和模块:
```
!pip install transformers
!pip install torch torchvision
```
2. 导入必要的库和模块:
```
import torch
import torchvision
import matplotlib.pyplot as plt
from transformers import ViTFeatureExtractor, ViTForImageSegmentation
```
3. 加载数据集:
```
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
])
train_dataset = torchvision.datasets.CocoDetection(
root='./data/train2017',
annFile='./data/annotations/instances_train2017.json',
transform=transform
)
test_dataset = torchvision.datasets.CocoDetection(
root='./data/val2017',
annFile='./data/annotations/instances_val2017.json',
transform=transform
)
```
4. 加载模型和特征提取器:
```
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224')
model = ViTForImageSegmentation.from_pretrained('google/vit-base-patch16-224')
```
5. 定义训练函数:
```
def train(model, train_dataloader, optimizer, criterion, device):
model.train()
train_loss = 0
for i, (inputs, targets) in enumerate(train_dataloader):
inputs = inputs.to(device)
targets = targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
return train_loss / len(train_dataloader)
```
6. 定义测试函数:
```
def test(model, test_dataloader, criterion, device):
model.eval()
test_loss = 0
with torch.no_grad():
for i, (inputs, targets) in enumerate(test_dataloader):
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
return test_loss / len(test_dataloader)
```
7. 训练模型:
```
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
criterion = torch.nn.CrossEntropyLoss()
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=16, shuffle=False)
num_epochs = 10
train_losses = []
test_losses = []
for epoch in range(num_epochs):
train_loss = train(model, train_dataloader, optimizer, criterion, device)
test_loss = test(model, test_dataloader, criterion, device)
train_losses.append(train_loss)
test_losses.append(test_loss)
print(f'Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}')
plt.plot(train_losses, label='Train Loss')
plt.plot(test_losses, label='Test Loss')
plt.legend()
plt.show()
```
8. 对单个图像进行预测:
```
image = torchvision.io.read_image('image.jpg')
inputs = transform(image).unsqueeze(0).to(device)
outputs = model(inputs)
segmentation_map = torch.argmax(outputs, dim=1).squeeze().cpu().numpy()
plt.imshow(segmentation_map)
plt.show()
```
以上是使用 transformers 库进行图像分割的例子,其中使用了 ViT 模型和 COCO 数据集。
Transformers做cifar-10图像分类任务pytorch版本的代码
下面是一个基于PyTorch实现的Transformers对cifar-10图像分类的代码,使用了BERT作为Transformers的模型。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from transformers import BertModel
# 超参数设置
input_size = 32
hidden_size = 768
num_classes = 10
batch_size = 100
num_epochs = 10
learning_rate = 0.001
# CIFAR-10数据集下载和预处理
transform = transforms.Compose(
[transforms.Resize((input_size, input_size)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,
shuffle=True, num_workers=2)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,
shuffle=False, num_workers=2)
# BERT模型定义
class BERT(nn.Module):
def __init__(self, hidden_size, num_classes):
super(BERT, self).__init__()
self.bert = BertModel.from_pretrained('bert-base-uncased')
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
# 前向传播 BERT
out = self.bert(x)[0][:, 0, :]
out = self.fc(out)
return out
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BERT(hidden_size, num_classes).to(device)
# 损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 模型训练
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 将图像转换成BERT需要的形状
images = images.reshape(-1, input_size * input_size * 3).to(device)
labels = labels.to(device)
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 模型测试
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
# 将图像转换成BERT需要的形状
images = images.reshape(-1, input_size * input_size * 3).to(device)
labels = labels.to(device)
# 前向传播
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
```
需要注意的是,这个代码中使用了一个将图像转换成BERT需要的形状的过程,即将每个图像的像素展平成一维向量。在这个例子中,我们使用了预训练的BERT模型来提取图像的特征,并将特征向量输入到一个全连接层中进行分类。
阅读全文