pytorch 实现SVR,用径向基函数
时间: 2024-05-02 17:14:21 浏览: 237
在PyTorch中实现SVR(支持向量回归)并使用径向基函数,可以按照以下步骤进行:
1. 导入所需的库和模块:
```python
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from sklearn.datasets import make_regression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
```
2. 生成合成数据集:
```python
X, y = make_regression(n_samples=100, n_features=1, noise=0.1, random_state=42)
```
3. 对数据进行标准化处理:
```python
scaler = StandardScaler()
X = scaler.fit_transform(X)
y = scaler.fit_transform(y.reshape(-1,1))
```
4. 将数据集划分为训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
5. 定义SVR模型:
```python
class SVR(nn.Module):
def __init__(self):
super(SVR, self).__init__()
self.fc1 = nn.Linear(1, 10)
self.fc2 = nn.Linear(10, 1)
self.activation = nn.Tanh()
def forward(self, x):
x = self.activation(self.fc1(x))
x = self.fc2(x)
return x
```
6. 创建模型实例和优化器:
```python
model = SVR()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = nn.MSELoss()
```
7. 将数据转换为PyTorch张量并创建数据加载器:
```python
train_data = TensorDataset(torch.from_numpy(X_train).float(), torch.from_numpy(y_train).float())
train_loader = DataLoader(train_data, batch_size=16, shuffle=True)
```
8. 训练模型:
```python
num_epochs = 100
for epoch in range(num_epochs):
for inputs, targets in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
```
9. 在测试集上评估模型:
```python
test_data = TensorDataset(torch.from_numpy(X_test).float(), torch.from_numpy(y_test).float())
test_loader = DataLoader(test_data, batch_size=16, shuffle=False)
model.eval()
with torch.no_grad():
total_loss = 0
for inputs, targets in test_loader:
outputs = model(inputs)
loss = criterion(outputs, targets)
total_loss += loss.item() * inputs.size(0)
mean_loss = total_loss / len(test_data)
print("Mean Loss: ", mean_loss)
```
这样就完成了使用PyTorch实现SVR并使用径向基函数的过程。
阅读全文