用python语言生成代码:定义初始神经网络和训练集。 进行神经网络训练。 对隐藏层每个神经元计算权值大小,并按权值大小将其存储到列表中。 对权值列表进行循环: (1)计算隐藏层所有神经元权重的平均值,将其定义为剪枝阈值变量。 (2)将隐藏层每个神经元权值与剪枝阈值进行比较,若隐藏层神经元权值大于剪枝阈值,则保留该神经元,相反,则将当前权值对应的神经元从神经网络中删除。 在训练集上进行准确率测试,并存储测试准确率。 (3)当隐藏层所有神经元权值都大于阈值时,结束循环。 返回最终的网络结构,进行神经网络训练,计算误差,并输出误差。
时间: 2023-05-29 14:02:26 浏览: 98
# 1. 定义初始神经网络和训练集
import numpy as np
# 输入层节点数
input_size = 4
# 隐藏层节点数
hidden_size = 5
# 输出层节点数
output_size = 3
# 初始权重矩阵
W1 = np.random.randn(input_size, hidden_size)
W2 = np.random.randn(hidden_size, output_size)
# 初始偏置向量
b1 = np.random.randn(hidden_size)
b2 = np.random.randn(output_size)
# 训练集
X_train = np.random.randn(100, input_size)
y_train = np.random.randn(100, output_size)
# 2. 进行神经网络训练
for i in range(1000):
# 前向传播
z1 = X_train.dot(W1) + b1
a1 = np.tanh(z1)
z2 = a1.dot(W2) + b2
y_pred = np.exp(z2) / np.sum(np.exp(z2), axis=1, keepdims=True)
# 计算误差
loss = -np.sum(y_train * np.log(y_pred)) / len(X_train)
# 反向传播
dz2 = y_pred - y_train
dW2 = a1.T.dot(dz2)
db2 = np.sum(dz2, axis=0)
da1 = dz2.dot(W2.T)
dz1 = da1 * (1 - np.square(a1))
dW1 = X_train.T.dot(dz1)
db1 = np.sum(dz1, axis=0)
# 更新权重和偏置
alpha = 0.01
W2 += -alpha * dW2
b2 += -alpha * db2
W1 += -alpha * dW1
b1 += -alpha * db1
# 3. 对隐藏层每个神经元计算权值大小,并按权值大小将其存储到列表中
weights = []
for j in range(hidden_size):
h_weights = W1[:, j]
weight_size = np.sum(np.abs(h_weights))
weights.append(weight_size)
# 4. 对权值列表进行循环
threshold = 0.1
while True:
# (1) 计算隐藏层所有神经元权重的平均值,将其定义为剪枝阈值变量
weights_mean = np.mean(weights)
# (2) 将隐藏层每个神经元权值与剪枝阈值进行比较
for j in range(hidden_size):
if weights[j] < weights_mean * threshold:
# 若权值小于阈值,则将该神经元从神经网络中删除
W1 = np.delete(W1, j, axis=1)
b1 = np.delete(b1, j)
hidden_size -= 1
weights.pop(j)
j -= 1
# 当隐藏层所有神经元权值都大于阈值时,结束循环
if all(weight > weights_mean * threshold for weight in weights):
break
# 计算测试准确率
z1 = X_train.dot(W1) + b1
a1 = np.tanh(z1)
z2 = a1.dot(W2) + b2
y_pred = np.exp(z2) / np.sum(np.exp(z2), axis=1, keepdims=True)
accuracy = np.mean(np.argmax(y_pred, axis=1) == np.argmax(y_train, axis=1))
# 保存测试准确率
accuracies.append(accuracy)
# 输出误差
print("Final loss:", loss)
阅读全文