torch.optim.Adam()
时间: 2024-01-14 17:05:55 浏览: 8
torch.optim.Adam() 是 PyTorch 中的一个优化器,用于优化神经网络的参数。它是 Adam (Adaptive Moment Estimation) 算法的一种实现,是一种自适应学习率的优化算法。Adam 算法基于梯度的一阶矩估计和二阶矩估计,可以在训练过程中自适应调整学习率,具有较好的收敛性和鲁棒性。在使用时,可以通过调整学习率等参数来控制优化的效果。
相关问题
torch.optim.Adam
`torch.optim.Adam` 是 PyTorch 中常用的优化器之一,用于对模型的参数进行优化。Adam 是一种基于梯度下降的优化算法,它能够自适应地调整每个参数的学习率,并且具有较快的收敛速度。
使用 `torch.optim.Adam` 来对模型进行优化的代码如下:
```python
import torch
import torch.optim as optim
model = MyModel()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
for data in dataloader:
optimizer.zero_grad()
inputs, labels = data
outputs = model(inputs)
loss = loss_fn(outputs, labels)
loss.backward()
optimizer.step()
```
首先,创建一个模型 `MyModel` 和一个 `Adam` 优化器,并将模型的参数传递给优化器。然后,循环训练数据集,对每个样本进行前向传播,计算损失值,并对损失值进行反向传播。最后,使用 `optimizer.step()` 函数来更新模型的参数。在每个 epoch 开始时,需要调用 `optimizer.zero_grad()` 函数来清空优化器中的梯度信息。
torch.optim.adam
`torch.optim.Adam` 是 PyTorch 中常用的优化器之一,用于对模型的参数进行优化。Adam 是一种基于梯度下降的优化算法,它能够自适应地调整每个参数的学习率,并且具有较快的收敛速度。
使用 `torch.optim.Adam` 来对模型进行优化的代码如下:
```python
import torch
import torch.optim as optim
model = MyModel()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
for data in dataloader:
optimizer.zero_grad()
inputs, labels = data
outputs = model(inputs)
loss = loss_fn(outputs, labels)
loss.backward()
optimizer.step()
```
首先,创建一个模型 `MyModel` 和一个 `Adam` 优化器,并将模型的参数传递给优化器。然后,循环训练数据集,对每个样本进行前向传播,计算损失值,并对损失值进行反向传播。最后,使用 `optimizer.step()` 函数来更新模型的参数。在每个 epoch 开始时,需要调用 `optimizer.zero_grad()` 函数来清空优化器中的梯度信息。
阅读全文