编写具体的代码
时间: 2023-07-02 15:21:05 浏览: 101
自己写的一些代码
好的,下面是一个可能的实现方法:
```matlab
% 读取csv文件
spectra = readtable('spectra.csv');
% 提取数据矩阵
data = table2array(spectra(2:end, 2:end));
% 定义适应度函数
% 这里使用简单的knn分类器,分类精度作为适应度
function [accuracy] = fitness_func(selected_wavelengths, data)
% 转换二进制编码为波段数值
wavelengths = find(selected_wavelengths);
% 选择特征波段
selected_data = data(:, wavelengths);
% 分割数据集
cv = cvpartition(size(selected_data, 1), 'HoldOut', 0.3);
train_data = selected_data(training(cv), :);
test_data = selected_data(test(cv), :);
train_labels = spectra(training(cv), 1);
test_labels = spectra(test(cv), 1);
% 训练knn分类器
mdl = fitcknn(train_data, train_labels);
% 预测测试集
pred_labels = predict(mdl, test_data);
% 计算分类精度
accuracy = sum(test_labels == pred_labels) / numel(test_labels);
end
% 定义遗传算法参数
pop_size = 50;
num_vars = size(data, 2);
fitness_func_handle = @(selected_wavelengths) fitness_func(selected_wavelengths, data);
options = gaoptimset('PopulationSize', pop_size, ...
'Generations', 50, ...
'CrossoverFraction', 0.8, ...
'MutationFcn', {@mutationuniform, 0.1}, ...
'Display', 'iter', ...
'PlotFcn', @gaplotbestf);
% 运行遗传算法
[selected_wavelengths, max_fitness] = ga(fitness_func_handle, num_vars, options);
% 输出选择的特征波段
selected_wavelengths_idx = find(selected_wavelengths);
selected_wavelengths_values = spectra.Properties.VariableNames(selected_wavelengths_idx + 1);
fprintf('Selected wavelengths: %s\n', strjoin(selected_wavelengths_values, ','));
% 保存选择的特征波段数据
selected_data = data(:, selected_wavelengths_idx);
selected_spectra = spectra(:, [1, selected_wavelengths_idx + 1]);
writetable(selected_spectra, 'selected_spectra.csv');
```
需要注意的是,由于没有提供数据集,上述代码未经测试,可能存在一些错误。如果出现问题,可以根据错误提示进行调试。
阅读全文