hal库spi读写flash
时间: 2023-07-30 16:08:31 浏览: 216
在HAL库中,可以使用SPI接口来进行Flash的读写操作。首先,需要调用W25X_WriteEnable()函数来使能Flash的写操作。然后,可以使用W25X_WritePage()函数来进行Flash的写页操作,该函数需要传入Flash的地址、数据缓冲区和数据长度作为参数。在进行Flash的读取操作之前,可以调用W25X_WaitBusy()函数来等待Flash的状态。该函数会一直循环读取Flash的状态寄存器,直到Flash不再忙碌为止。最后,可以使用W25X_Erase()函数来进行Flash的擦除操作,该函数需要传入Flash的地址作为参数。
#### 引用[.reference_title]
- *1* *2* *3* [【C应用】基于HAL库的SPI读FLASH](https://blog.csdn.net/Roger_717/article/details/108763407)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
相关问题
hal库spi读写nand falsh
由于 HAL 库是针对 STM32 微控制器的,因此假设你要使用 HAL 库来读写 NAND Flash,你需要先检查你的 STM32 微控制器是否具有与 NAND Flash 进行通信的硬件接口(如 FMC、FSMC 等)。
如果有适当的硬件接口,则可以使用 HAL 库中提供的相应函数来初始化该接口,并使用 SPI 接口来读写 NAND Flash。以下是一些可能有用的函数:
1. HAL_SPI_Transmit():将数据发送到 NAND Flash。
2. HAL_SPI_Receive():从 NAND Flash 接收数据。
3. HAL_SPI_TransmitReceive():同时发送和接收数据。
4. HAL_GPIO_WritePin():设置 GPIO 引脚的状态(例如用于控制 NAND Flash 的片选信号)。
使用这些函数,你可以编写代码来与 NAND Flash 进行通信,并读取和写入数据。请注意,每个 NAND Flash 厂商都有不同的命令和数据格式,因此你需要查看 NAND Flash 的数据手册来确定正确的通信协议。
HAL库SPI读写adc转换值
以下是基于HAL库的SPI读写ADC转换值的示例代码,仅供参考:
```c
#include "stm32f4xx_hal.h"
#define CS_Pin GPIO_PIN_4
#define CS_GPIO_Port GPIOA
SPI_HandleTypeDef hspi1;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
int main(void)
{
uint8_t txData[3] = {0x01, 0x80, 0x00}; // 发送的 SPI 数据
uint8_t rxData[3] = {0};
uint16_t adcValue = 0;
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_SPI1_Init();
while (1)
{
// 使能 ADC
HAL_GPIO_WritePin(CS_GPIO_Port, CS_Pin, GPIO_PIN_RESET);
// 读取 ADC 转换值
HAL_SPI_TransmitReceive(&hspi1, txData, rxData, 3, 100);
adcValue = (rxData[1] << 8) | (rxData[2] & 0xFF);
// 禁用 ADC
HAL_GPIO_WritePin(CS_GPIO_Port, CS_Pin, GPIO_PIN_SET);
// 处理 ADC 转换值
// ...
HAL_Delay(100);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
static void MX_SPI1_Init(void)
{
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
HAL_GPIO_WritePin(CS_GPIO_Port, CS_Pin, GPIO_PIN_SET);
GPIO_InitStruct.Pin = CS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(CS_GPIO_Port, &GPIO_InitStruct);
}
```
需要注意的是,这里示例代码中的 SPI1 和 GPIOA 是根据具体硬件连接来设置的,实际使用时需要根据自己的硬件连接进行修改。另外,示例代码中发送的 SPI 数据是 `0x018000`,其中 `0x01` 表示启动转换的控制字,`0x80` 表示选择通道 0,`0x00` 表示不使用增益,具体可以参考 ADC 的数据手册。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)