字写数字的识别 基于Mnist数据集,请用BP神经网络、支持向量机对手写数字进行识别 要求: 1、编程语言:Matlab 2、可以使用额外的库函数。
时间: 2024-05-04 10:21:07 浏览: 105
好的,以下是基于Mnist数据集的手写数字识别的BP神经网络和支持向量机的Matlab代码实现。我们将Mnist数据集分为训练集和测试集,用训练集训练模型,再用测试集测试模型的准确率。
首先,我们需要加载Mnist数据集,这里我们使用的是loadMNISTImages和loadMNISTLabels两个函数,代码如下:
```matlab
% 加载Mnist数据集
[train_images, train_labels, test_images, test_labels] = loadMnistData();
```
接下来,我们需要将数据集进行处理,将标签转换为独热编码,将图像像素值归一化到0到1之间,并将图像展开为一维向量,代码如下:
```matlab
% 处理数据集
train_labels = convertLabelsToVectors(train_labels);
test_labels = convertLabelsToVectors(test_labels);
train_images = normalizeImages(train_images);
test_images = normalizeImages(test_images);
train_images = reshape(train_images, size(train_images, 1)*size(train_images, 2), size(train_images, 3));
test_images = reshape(test_images, size(test_images, 1)*size(test_images, 2), size(test_images, 3));
```
接下来,我们可以开始构建BP神经网络模型。这里我们使用一个包含一个隐藏层的全连接神经网络,隐藏层有64个神经元。代码如下:
```matlab
% 构建BP神经网络模型
hidden_layer_size = 64;
output_layer_size = 10;
net = feedforwardnet(hidden_layer_size);
net.layers{1}.transferFcn = 'logsig';
net.layers{2}.transferFcn = 'logsig';
net.trainParam.lr = 0.1;
net.trainParam.epochs = 50;
net.trainParam.goal = 0.01;
net.trainFcn = 'traingd';
net = train(net, train_images, train_labels);
```
我们使用traingd训练函数进行训练,学习率为0.1,训练轮数为50,目标误差为0.01。训练完后,我们可以在测试集上测试模型的准确率,代码如下:
```matlab
% 在测试集上测试BP神经网络模型的准确率
test_outputs = net(test_images);
test_outputs = vec2ind(test_outputs) - 1;
accuracy = sum(test_outputs == test_labels) / length(test_labels);
disp(['BP神经网络模型在测试集上的准确率为:' num2str(accuracy)]);
```
接下来,我们可以构建支持向量机模型。这里我们使用libsvm库函数,代码如下:
```matlab
% 构建支持向量机模型
svm_model = svmtrain(train_labels, train_images', '-t 2 -c 1 -g 0.07');
```
我们使用RBF核函数,惩罚参数C为1,核函数参数gamma为0.07进行训练。训练完后,我们可以在测试集上测试模型的准确率,代码如下:
```matlab
% 在测试集上测试支持向量机模型的准确率
test_outputs = svmpredict(test_labels, test_images', svm_model);
accuracy = sum(test_outputs == test_labels) / length(test_labels);
disp(['支持向量机模型在测试集上的准确率为:' num2str(accuracy)]);
```
完整代码如下:
```matlab
% 加载Mnist数据集
[train_images, train_labels, test_images, test_labels] = loadMnistData();
% 处理数据集
train_labels = convertLabelsToVectors(train_labels);
test_labels = convertLabelsToVectors(test_labels);
train_images = normalizeImages(train_images);
test_images = normalizeImages(test_images);
train_images = reshape(train_images, size(train_images, 1)*size(train_images, 2), size(train_images, 3));
test_images = reshape(test_images, size(test_images, 1)*size(test_images, 2), size(test_images, 3));
% 构建BP神经网络模型
hidden_layer_size = 64;
output_layer_size = 10;
net = feedforwardnet(hidden_layer_size);
net.layers{1}.transferFcn = 'logsig';
net.layers{2}.transferFcn = 'logsig';
net.trainParam.lr = 0.1;
net.trainParam.epochs = 50;
net.trainParam.goal = 0.01;
net.trainFcn = 'traingd';
net = train(net, train_images, train_labels);
% 在测试集上测试BP神经网络模型的准确率
test_outputs = net(test_images);
test_outputs = vec2ind(test_outputs) - 1;
accuracy = sum(test_outputs == test_labels) / length(test_labels);
disp(['BP神经网络模型在测试集上的准确率为:' num2str(accuracy)]);
% 构建支持向量机模型
svm_model = svmtrain(train_labels, train_images', '-t 2 -c 1 -g 0.07');
% 在测试集上测试支持向量机模型的准确率
test_outputs = svmpredict(test_labels, test_images', svm_model);
accuracy = sum(test_outputs == test_labels) / length(test_labels);
disp(['支持向量机模型在测试集上的准确率为:' num2str(accuracy)]);
% 加载Mnist数据集
function [train_images, train_labels, test_images, test_labels] = loadMnistData()
train_images = loadMNISTImages('train-images-idx3-ubyte');
train_labels = loadMNISTLabels('train-labels-idx1-ubyte');
test_images = loadMNISTImages('t10k-images-idx3-ubyte');
test_labels = loadMNISTLabels('t10k-labels-idx1-ubyte');
end
% 将标签转换为独热编码
function labels = convertLabelsToVectors(labels)
num_labels = length(labels);
labels = sparse(1:num_labels, double(labels)+1, 1, num_labels, 10);
end
% 将图像像素值归一化到0到1之间
function images = normalizeImages(images)
images = double(images) / 255;
end
```
希望能帮到你!
阅读全文