基于tushare数据请用Python写一个上证50指数期权的Theta Neutral的期权交易策略
时间: 2024-06-12 09:06:19 浏览: 175
首先,需要导入tushare库和pandas库,以获取上证50指数的历史行情数据。
```
import tushare as ts
import pandas as pd
# 获取上证50指数历史数据
df = ts.get_k_data('sh000016', start='2015-01-01', end='2021-12-31')
df = df.set_index('date')
```
接下来,根据Theta Neutral策略,需要计算每个期权合约的Theta值,并选择Theta值最接近0的合约进行交易。
```
# 计算每个合约的Theta值
df['maturity'] = pd.to_datetime(df['maturity'])
df['days_to_maturity'] = (df['maturity'] - pd.to_datetime(df.index)).dt.days
df['Theta'] = df['close'].diff().rolling(window=5).mean() / df['days_to_maturity'] * 365
# 选择Theta值最接近0的合约进行交易
df = df.sort_values('days_to_maturity').iloc[0]
```
最后,根据选定的合约进行买入或卖出操作。
```
# 如果Theta为正,卖出该合约
if df['Theta'] > 0:
print('Sell', df.name)
# 如果Theta为负,买入该合约
elif df['Theta'] < 0:
print('Buy', df.name)
# 如果Theta为0,不进行交易
else:
print('Hold')
```
完整代码如下:
```
import tushare as ts
import pandas as pd
# 获取上证50指数历史数据
df = ts.get_k_data('sh000016', start='2015-01-01', end='2021-12-31')
df = df.set_index('date')
# 计算每个合约的Theta值
df['maturity'] = pd.to_datetime(df['maturity'])
df['days_to_maturity'] = (df['maturity'] - pd.to_datetime(df.index)).dt.days
df['Theta'] = df['close'].diff().rolling(window=5).mean() / df['days_to_maturity'] * 365
# 选择Theta值最接近0的合约进行交易
df = df.sort_values('days_to_maturity').iloc[0]
# 如果Theta为正,卖出该合约
if df['Theta'] > 0:
print('Sell', df.name)
# 如果Theta为负,买入该合约
elif df['Theta'] < 0:
print('Buy', df.name)
# 如果Theta为0,不进行交易
else:
print('Hold')
```
阅读全文