基于lstm的房价波动预测的matlab代码
时间: 2024-01-21 07:04:37 浏览: 77
以下是一个基于LSTM的房价波动预测的Matlab代码示例:
```matlab
% 导入数据
data = xlsread('house_price.xlsx');
train_data = data(1:300,:);
test_data = data(301:end,:);
% 归一化
min_train = min(train_data);
max_train = max(train_data);
train_data = (train_data - min_train) ./ (max_train - min_train);
test_data = (test_data - min_train) ./ (max_train - min_train);
% 构建训练集和标签
train_x = zeros(299,3,30);
train_y = zeros(299,1);
for i = 1:299
train_x(i,:,:) = train_data(i:i+2,:)';
train_y(i) = train_data(i+3,1);
end
% 构建 LSTM 模型
num_features = 3;
num_hidden_units = 50;
layers = [ ...
sequenceInputLayer(num_features)
lstmLayer(num_hidden_units,'OutputMode','last')
fullyConnectedLayer(1)
regressionLayer];
% 训练 LSTM 模型
options = trainingOptions('adam', ...
'MaxEpochs',200, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.005, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.5, ...
'LearnRateDropPeriod',50, ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(train_x,train_y,layers,options);
% 预测测试集
test_x = zeros(66,3,30);
for i = 1:66
test_x(i,:,:) = test_data(i:i+2,:)';
end
test_y = predict(net,test_x);
% 反归一化
test_y = test_y .* (max_train(1) - min_train(1)) + min_train(1);
test_data = test_data .* (max_train - min_train) + min_train;
% 绘制结果
plot(test_data(:,1),'b');
hold on;
plot(test_y,'r');
legend('Actual','Predicted');
xlabel('Time');
ylabel('House Price');
```
这个代码示例中,我们首先导入数据,然后将数据归一化。接着,我们使用前30个房价数据来构建训练集和标签,每次预测后移一步,以此类推。我们使用这些序列来训练一个LSTM模型,并在测试集上进行预测。最后,我们反归一化预测结果并绘制出实际和预测的房价。
阅读全文