self.layers.append(Affine(self.params['W7'], self.params['b7'])) self.layers.append(Relu()) self.layers.append(Dropout(0.5)) self.layers.append(Affine(self.params['W8'], self.params['b8'])) self.layers.append(Dropout(0.5))
时间: 2024-04-02 14:37:35 浏览: 24
这段代码是在神经网络中添加了两个全连接层(Affine),两个ReLU激活函数层,以及两个Dropout层。其中,Affine层是对输入数据进行线性变换的层,ReLU层是对输入数据进行非线性变换的层,Dropout层是为了防止过拟合而在训练过程中随机丢弃一定比例的神经元。这段代码的具体实现可能涉及到神经网络的前向传播和反向传播过程,需要结合具体的代码实现来进行分析。
相关问题
self.layers = [] self.layers.append(Convolution(self.params['W1'], self.params['b1'], conv_param_1['stride'], conv_param_1['pad'])) self.layers.append(Relu()) self.layers.append(Convolution(self.params['W2'], self.params['b2'], conv_param_2['stride'], conv_param_2['pad'])) self.layers.append(Relu()) self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2)) self.layers.append(Convolution(self.params['W3'], self.params['b3'], conv_param_3['stride'], conv_param_3['pad'])) self.layers.append(Relu()) self.layers.append(Convolution(self.params['W4'], self.params['b4'], conv_param_4['stride'], conv_param_4['pad'])) self.layers.append(Relu()) self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2)) self.layers.append(Convolution(self.params['W5'], self.params['b5'], conv_param_5['stride'], conv_param_5['pad'])) self.layers.append(Relu()) self.layers.append(Convolution(self.params['W6'], self.params['b6'], conv_param_6['stride'], conv_param_6['pad'])) self.layers.append(Relu()) self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2)) self.layers.append(Affine(self.params['W7'], self.params['b7'])) self.layers.append(Relu()) self.layers.append(Dropout(0.5)) self.layers.append(Affine(self.params['W8'], self.params['b8'])) self.layers.append(Dropout(0.5)) self.last_layer = SoftmaxWithLoss()
这段代码是构建一个卷积神经网络的层。其中`self.layers`是神经网络的层的列表,按顺序加入了卷积层、ReLU激活函数、池化层、全连接层、Dropout层和Softmax损失函数层。具体来说,前6个层是卷积层和ReLU激活函数的交替,再加上池化层,构成了卷积层的部分。接下来是两个全连接层,分别加上了Dropout层。最后一层是Softmax损失函数层,用于分类。
阅读全文