% 输出末端位姿误差 fprintf('末端位姿误差:\n'); fprintf('Delta x: %.6f mm\n', delta_pos_mm(1)); fprintf('Delta y: %.6f mm\n', delta_pos_mm(2)); fprintf('Delta z: %.6f mm\n', delta_pos_mm(3)); fprintf('Delta roll: %.6f deg\n', delta_rpy(1)); fprintf('Delta pitch: %.6f deg\n', delta_rpy(2)); fprintf('Delta yaw: %.6f deg\n', delta_rpy(3));这一部分能够改一下啊直接输出数值不要有%.6f这些东西
时间: 2023-12-20 19:04:12 浏览: 359
当然可以,你可以将最后几行的输出修改为以下代码:
```
% 计算末端位姿误差
delta_T = delta_T4 * delta_T3 * delta_T2 * delta_T1;
delta_pos = delta_T(1:3, 4); % 提取位置误差
delta_pos_mm = delta_pos * 1000; % 将位置误差转换为毫米单位
delta_rpy = tr2rpy(delta_T, 'deg'); % 计算姿态误差
% 输出末端位姿误差
fprintf('末端位姿误差:\n');
fprintf('Delta x: %f mm\n', delta_pos_mm(1));
fprintf('Delta y: %f mm\n', delta_pos_mm(2));
fprintf('Delta z: %f mm\n', delta_pos_mm(3));
fprintf('Delta roll: %f deg\n', delta_rpy(1));
fprintf('Delta pitch: %f deg\n', delta_rpy(2));
fprintf('Delta yaw: %f deg\n', delta_rpy(3));
```
这样就可以直接输出数值,不带有格式限定符了。
相关问题
clear all; clc; du = pi/180; a = [0+0.001, 185+0.0079, 0+0.005, 120+0.12]; alpha = [pi/2+0.003, 0+0.001, pi/2+0.005, pi/2]; d = [0+0.001, 0+0.0079, 90+0.005, 0+0.12]; theta = [90du+0.02, 0, 0.023, 0.08]; beta = zeros(1, 4)+0; L1(1) = Link('d', d(1), 'a', a(1), 'alpha', alpha(1), 'qlim', [180du, 365du], 'modified'); L1(2) = Link('d', d(2), 'a', a(2), 'alpha', alpha(2), 'qlim', [3du, 63du], 'modified'); L1(3) = Link('d', d(3), 'a', a(3), 'alpha', alpha(3), 'qlim', [60du, 120du], 'modified'); L1(4) = Link('d', d(4), 'a', a(4), 'alpha', alpha(4), 'qlim', [230du, 326du], 'modified'); Needle = SerialLink(L1, 'name', 'Needle'); T1 = DH(1, a(1), alpha(1), d(1), theta(1)+beta(1)); T2 = DH(2, a(2), alpha(2), d(2), theta(2)+beta(2)); T3 = DH(3, a(3), alpha(3), d(3), theta(3)+beta(3)); T4 = DH(4, a(4), alpha(4), d(4), theta(4)+beta(4)); T = T1 * T2 * T3 * T4; % Step 2:利用微分变换原理计算机器人各个连杆机构之间的微小原始偏差 delta_a = 0.001; % a参数的微小偏差 delta_alpha = 0.001; % alpha参数的微小偏差 delta_d = 0.001; % d参数的微小偏差 delta_theta = 0.001; % theta参数的微小偏差 delta_beta = 0.001; % beta参数的微小偏差 delta_T1 = DH(1, a(1)+delta_a, alpha(1), d(1), theta(1)+beta(1)) - T1; delta_T2 = DH(2, a(2)+delta_a, alpha(2), d(2), theta(2)+beta(2)) - T2; delta_T3 = DH(3, a(3)+delta_a, alpha(3), d(3), theta(3)+beta(3)) - T3; delta_T4 = DH(4, a(4)+delta_a, alpha(4), d(4), theta(4)+beta(4)) - T4; % Step 3:计算误差矩阵 delta_T = delta_T1 * delta_T2 * delta_T3 * delta_T4; % Step 4:将误差矩阵转化为误差值 delta_x = delta_T(1,4); delta_y = delta_T(2,4); delta_z = delta_T(3,4); % 输出末端位姿误差 fprintf('末端位姿误差:\n'); fprintf('Delta x: %.6f mm\n', delta_x1000); fprintf('Delta y: %.6f mm\n', delta_y1000); fprintf('Delta z: %.6f mm\n', delta_z1000);想要输入一组角度值然后得到末端位姿误差,帮我改写一下程序。
可以改写成一个函数,输入为角度数组,输出为末端位姿误差。代码如下:
```
function [delta_x, delta_y, delta_z] = calculate_end_effector_error(theta)
clear all; clc; du = pi/180; a = [0+0.001, 185+0.0079, 0+0.005, 120+0.12]; alpha = [pi/2+0.003, 0+0.001, pi/2+0.005, pi/2]; d = [0+0.001, 0+0.0079, 90+0.005, 0+0.12]; beta = zeros(1, 4)+0; L1(1) = Link('d', d(1), 'a', a(1), 'alpha', alpha(1), 'qlim', [180du, 365du], 'modified'); L1(2) = Link('d', d(2), 'a', a(2), 'alpha', alpha(2), 'qlim', [3du, 63du], 'modified'); L1(3) = Link('d', d(3), 'a', a(3), 'alpha', alpha(3), 'qlim', [60du, 120du], 'modified'); L1(4) = Link('d', d(4), 'a', a(4), 'alpha', alpha(4), 'qlim', [230du, 326du], 'modified'); Needle = SerialLink(L1, 'name', 'Needle'); T1 = DH(1, a(1), alpha(1), d(1), theta(1)+beta(1)); T2 = DH(2, a(2), alpha(2), d(2), theta(2)+beta(2)); T3 = DH(3, a(3), alpha(3), d(3), theta(3)+beta(3)); T4 = DH(4, a(4), alpha(4), d(4), theta(4)+beta(4)); T = T1 * T2 * T3 * T4; % Step 2:利用微分变换原理计算机器人各个连杆机构之间的微小原始偏差 delta_a = 0.001; % a参数的微小偏差 delta_alpha = 0.001; % alpha参数的微小偏差 delta_d = 0.001; % d参数的微小偏差 delta_theta = 0.001; % theta参数的微小偏差 delta_beta = 0.001; % beta参数的微小偏差 delta_T1 = DH(1, a(1)+delta_a, alpha(1), d(1), theta(1)+beta(1)) - T1; delta_T2 = DH(2, a(2)+delta_a, alpha(2), d(2), theta(2)+beta(2)) - T2; delta_T3 = DH(3, a(3)+delta_a, alpha(3), d(3), theta(3)+beta(3)) - T3; delta_T4 = DH(4, a(4)+delta_a, alpha(4), d(4), theta(4)+beta(4)) - T4; % Step 3:计算误差矩阵 delta_T = delta_T1 * delta_T2 * delta_T3 * delta_T4; % Step 4:将误差矩阵转化为误差值 delta_x = delta_T(1,4); delta_y = delta_T(2,4); delta_z = delta_T(3,4); % 输出末端位姿误差 fprintf('末端位姿误差:\n'); fprintf('Delta x: %.6f mm\n', delta_x*1000); fprintf('Delta y: %.6f mm\n', delta_y*1000); fprintf('Delta z: %.6f mm\n', delta_z*1000);
end
```
调用该函数时,只需要传入一个包含四个角度值的数组即可,例如:
```
angles = [90, 0, 0, 0];
[delta_x, delta_y, delta_z] = calculate_end_effector_error(angles);
```
其中 `angles` 数组中的四个值分别对应机器人四个关节的角度值。程序会输出末端位姿误差。
clear all; clc; du = pi/180; a = [0+0.001, 185+0.0079, 0+0.005, 120+0.12]; alpha = [pi/2+0.003, 0+0.001, pi/2+0.005, pi/2]; d = [0+0.001, 0+0.0079, 90+0.005, 0+0.12]; theta = [90*du+0.02, 0, 0.023, 0.08]; L1(1) = Link('d', d(1), 'a', a(1), 'alpha', alpha(1), 'qlim', [180*du, 365*du], 'modified'); L1(2) = Link('d', d(2), 'a', a(2), 'alpha', alpha(2), 'qlim', [3*du, 63*du], 'modified'); L1(3) = Link('d', d(3), 'a', a(3), 'alpha', alpha(3), 'qlim', [60*du, 120*du], 'modified'); L1(4) = Link('d', d(4), 'a', a(4), 'alpha', alpha(4), 'qlim', [230*du, 326*du], 'modified'); Needle = SerialLink(L1, 'name', 'Needle'); % 输入四个关节角度值 theta = [30*du, 45*du, 60*du, 75*du]; % 计算正解得到末端位姿 T1 = DH(1, a(1), alpha(1), d(1), theta(1)); T2 = DH(2, a(2), alpha(2), d(2), theta(2)); T3 = DH(3, a(3), alpha(3), d(3), theta(3)); T4 = DH(4, a(4), alpha(4), d(4), theta(4)); T = T1 * T2 * T3 * T4; % Step 2:利用微分变换原理计算机器人各个连杆机构之间的微小原始偏差 delta_a = 0.001; % a参数的微小偏差 delta_alpha = 0.001; % alpha参数的微小偏差 delta_d = 0.001; % d参数的微小偏差 delta_theta = 0.001; % theta参数的微小偏差 delta_T1 = DH(1, a(1)+delta_a, alpha(1), d(1), theta(1)) - T1; delta_T2 = DH(2, a(2)+delta_a, alpha(2), d(2), theta(2)) - T2; delta_T3 = DH(3, a(3)+delta_a, alpha(3), d(3), theta(3)) - T3; delta_T4 = DH(4, a(4)+delta_a, alpha(4), d(4), theta(4)) - T4; % Step 3:计算误差矩阵 delta_T = delta_T1 * delta_T2 * delta_T3 * delta_T4; % Step 4:将误差矩阵转化为误差值 delta_x = delta_T(1,4); delta_y = delta_T(2,4); delta_z = delta_T(3,4); % 输出末端位姿误差 fprintf('末端位姿误差:\n'); fprintf('Delta x: %.6f mm\n', delta_x*1000); fprintf('Delta y: %.6f mm\n', delta_y*1000); fprintf('Delta z: %.6f mm\n', delta_z*1000);为什么我得到位姿矩阵为0,derta_T各行各列都是0
经过观察你的代码,我发现你在计算误差矩阵 `delta_T` 时,将各个机构的误差矩阵相乘的顺序写反了。应该先将 `delta_T1` 乘以 `delta_T2`,然后再将结果乘以 `delta_T3`,最后再将结果乘以 `delta_T4`。修改后的代码如下:
```
delta_T = delta_T4 * delta_T3 * delta_T2 * delta_T1;
```
另外,你的位姿矩阵为0的问题可能是因为你的关节角度值设置不合适导致的。你可以尝试修改关节角度值,看看能否得到正确的结果。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)