import numpy as np import cv2 font= cv2.FONT_HERSHEY_SIMPLEX lower_red=np.array([0,127,128])#红色阈值下界 higher_red=np.array([10,255,255])#红色阈值上界 lower_green=np.array([35,110,106])#绿色阈值下界 higher_green=np.array([77,255,255])#绿色阈值上界 cap=cv2.VideoCapture(0)#打开电脑内置摄像头 if(cap.isOpened()): while(True): ret,frame=cap.read()#按帧读取,这是读取一帧 img_hsv=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) mask_red=cv2.inRange(img_hsv,lower_red,higher_red)#可以认为是过滤出红色部分,获得红色的掩膜 mask_green=cv2.inRange(img_hsv,lower_green,higher_green)#获得绿色部分掩膜 mask_green = cv2.medianBlur(mask_green, 7) # 中值滤波 mask_red = cv2.medianBlur(mask_red, 7) # 中值滤波 mask=cv2.bitwise_or(mask_green,mask_red)#三部分掩膜进行按位或运算 image1,cnts1,hierarchy1=cv2.findContours(mask_red,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)#轮廓检测 image3,cnts3,hierarchy3=cv2.findContours(mask_green,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) for cnt in cnts1: (x,y,w,h)=cv2.boundingRect(cnt)#该函数返回矩阵四个点 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)#将检测到的颜色框起来 cv2.putText(frame,'red',(x,y-5),font,0.7,(0,0,255),2) for cnt in cnts3: (x, y, w, h) = cv2.boundingRect(cnt) # 该函数返回矩阵四个点 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) # 将检测到的颜色框起来 cv2.putText(frame, 'green', (x, y - 5), font, 0.7, (0,255,0), 2) cv2.imshow('frame',frame) k=cv2.waitKey(20)&0xFF if k ==27: break cv2.waitKey(0) cv2.destroyAllWindows()
时间: 2023-10-10 22:09:36 浏览: 77
这段代码是用来通过电脑内置摄像头实时检测红色和绿色物体,并在画面上用矩形框标记出来。首先,代码导入了必要的库,然后定义了红色和绿色的阈值范围。接下来,打开摄像头并进行帧读取,将读取到的帧转换为HSV颜色空间。然后使用阈值范围过滤红色和绿色部分,并进行中值滤波处理。最后,使用轮廓检测找到物体的轮廓,并在画面上用矩形框标记出来。
请问有什么问题我可以帮助你解答吗?
相关问题
请用vscode中的 opencv库编写python代码,实现对图片中的交通灯进行颜色识别的功能。使用opencv自带的cv2.inrange,并输出识别后的图片的结果。
要在Visual Studio Code (VSCode) 中使用 OpenCV 库来识别图片中交通灯的颜色,首先需要安装必要的库和环境。以下是步骤以及简单的Python代码示例:
1. 安装所需库:
如果尚未安装`opencv-python`和`numpy`库,可以使用pip命令:
```
pip install opencv-python numpy
```
2. 导入所需的模块:
```python
import cv2
import numpy as np
```
3. 加载图像并转换为HSV色彩空间:
```python
img = cv2.imread('traffic_light.jpg') # 替换为你实际的图片路径
hsv_image = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
```
4. 确定交通信号灯的颜色范围(这里假设红绿黄三色):
```python
red_lower = np.array([0, 50, 50]) # 红色下限
red_upper = np.array([10, 255, 255]) # 红色上限
green_lower = np.array([40, 50, 50]) # 绿色下限
green_upper = np.array([70, 255, 255]) # 绿色上限
yellow_lower = np.array([20, 50, 50]) # 黄色下限
yellow_upper = np.array([40, 255, 255]) # 黄色上限
```
5. 对每个颜色区间应用`inRange`函数:
```python
mask_red = cv2.inRange(hsv_image, red_lower, red_upper)
mask_green = cv2.inRange(hsv_image, green_lower, green_upper)
mask_yellow = cv2.inRange(hsv_image, yellow_lower, yellow_upper)
# 使用位运算合并所有颜色通道的掩码
combined_mask = mask_red | mask_green | mask_yellow
```
6. 提取目标区域(这一步可以根据实际需求调整,例如通过膨胀、腐蚀等操作):
```python
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
dilated_mask = cv2.dilate(combined_mask, kernel)
contours, _ = cv2.findContours(dilated_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
```
7. 绘制识别结果到原图上:
```python
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
img = cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
# 获取并显示每个目标区域的颜色
roi_color = hsv_image[y:y+h, x:x+w]
color_name = "Red" if 'red' in combined_mask[y:y+h, x:x+w].shape else ("Green" if 'green' in ... else "Yellow")
cv2.putText(img, color_name, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
```
8. 最后保存处理后的图片:
```python
output_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 转换为RGB格式以便显示
cv2.imwrite("recognized_traffic_lights.jpg", output_img)
```
使用python,打开文件‘view1.jpg’,利用图像处理方法实现对于图片‘view1.jpg’中的目标红色的小瓶子进行检测。实现在图像中框出红色目标区域,并显示红色目标在图像中的坐标位置和质心等信息。
在Python中,你可以使用OpenCV库来处理图像并进行目标检测。首先,你需要安装`opencv-python`和`matplotlib`库。下面是一个简单的步骤示例:
```python
import cv2
import numpy as np
from matplotlib import pyplot as plt
# 打开图片
img = cv2.imread('view1.jpg')
# 转换为HSV色彩空间以便于对红颜色进行匹配
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 定义红色的HSV范围
lower_red = np.array([0, 50, 50])
upper_red = np.array([10, 255, 255]) # 稍微调整红色的范围以适应目标
mask = cv2.inRange(hsv_img, lower_red, upper_red) # 创建掩码
# 对原图进行位运算,得到红色目标部分
red_contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if red_contours:
contour_with_largest_area = max(red_contours, key=cv2.contourArea) # 获取面积最大的轮廓
x, y, w, h = cv2.boundingRect(contour_with_largest_area) # 计算边界框
# 绘制边界框
img = cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 2)
# 计算质心
M = cv2.moments(contour_with_largest_area)
if M["m00"] != 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
# 显示坐标和质心
cv2.putText(img, f"坐标: ({x}, {y}) 质心: ({cx}, {cy})", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# 显示原始图片和结果
plt.subplot(121), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.title("Original Image")
plt.subplot(122), plt.imshow(cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)), plt.title("Detected Red Region")
plt.show()
阅读全文