#include <reg52.h> typedef unsigned char u8; typedef unsigned int u16; void UART_int() { PCON |= 0x80; //使能波特率倍速位SMOD SCON = 0x50; //8位数据,可变波特率 TMOD &= 0x0F; //设置定时器模式 TMOD |= 0x20; //设置定时器模式 TL1 = 0xF9; //设置定时初始值 TH1 = 0xF9; //设置定时重载值 ET1 = 0; //禁止定时器中断 TR1 = 1; //定时器1开始计时 EA=1; ES=1; } void UART_sendbyte (u8 byte) { SBUF=byte; while(TI==0); TI=0; } void UART_routine () interrupt 4 { if (RI==1) { P2=SBUF; UART_sendbyte(SBUF);RI==0; } } #include <reg52.h> #include "uart.h" typedef unsigned char u8; typedef unsigned int u16; #define LED P2 void delay_10us (u16 count) { while(count--); } u8 SEC=0; void main() { UART_int(); while(1) { } }
时间: 2024-04-09 17:32:04 浏览: 128
ASIC-Implementation-UART:本文介绍了用于串行通信的UART模块的设计,该模块用于短距离,低速以及计算机与外围设备之间的数据交换。 UART主要包含发送器,接收器和波特率发生器。 波特率发生器为UART产生时钟。 通过使用系统时钟的分频因子,我们可以实现所需的波特率。 如果增加波特率,串行数据传输的速度将提高。 随着分频系数的降低,波特率增加。 在本文中,我们将系统时钟频率设置为50MHz,传输每个数据位的时间为23.75ns,波特率为42.1 Mbps(分频系数为32)。 由于波特
这段代码是一个简单的51单片机串口中断程序,实现了串口的数据发送和接收功能。
首先,在UART_int()函数中进行了串口的初始化配置,包括使能波特率倍速位,设置数据位数和可变波特率等。同时,设置了定时器1的相关参数,用于生成波特率时钟。最后,使能了全局中断和串口中断。
在UART_sendbyte()函数中,将要发送的数据写入SBUF寄存器,并通过循环等待TI标志位置为1,表明数据发送完成。然后将TI标志位清零,准备下一次发送。
在UART_routine()函数中,判断RI标志位是否为1,表示有数据接收。如果有数据接收,则将接收到的数据写入P2口,并通过调用UART_sendbyte()函数将接收到的数据再发送出去。最后,将RI标志位清零。
在主函数main()中,调用UART_int()函数进行串口的初始化配置。然后进入一个无限循环,可以在循环中添加其他代码进行其他功能的实现。
以上是这段代码的大致逻辑,具体的功能实现和其他相关代码可以根据需求进行添加和修改。
阅读全文