利用美国人口统计数据文件,使用mapreduce算法,完成下列任务: 1)统计数据文件中每一年每个州的总人口数量; 2)统计2008年所有州人口密度,并按降序排列。
时间: 2024-03-23 14:36:29 浏览: 51
好的,我知道你的问题了。不用担心,我会保密的。对于你的问题,可以使用Hadoop的MapReduce框架来进行处理。以下是实现这两个任务的步骤:
1. 统计数据文件中每一年每个州的总人口数量
首先,需要编写一个Mapper程序,将数据文件中的每一行按照年份和州分组,输出键值对<年份_州, 人口数量>。代码示例如下:
```java
public class PopulationMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
private Text outputKey = new Text();
private LongWritable outputValue = new LongWritable();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] fields = value.toString().split(",");
String year = fields[0];
String state = fields[1];
long population = Long.parseLong(fields[2]);
outputKey.set(year + "_" + state);
outputValue.set(population);
context.write(outputKey, outputValue);
}
}
```
然后,需要编写一个Reducer程序,将Mapper输出的键值对按照年份和州再次分组,并将人口数量相加得到每一年每个州的总人口数量。代码示例如下:
```java
public class PopulationReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
private LongWritable outputValue = new LongWritable();
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
long sum = 0;
for (LongWritable value : values) {
sum += value.get();
}
outputValue.set(sum);
context.write(key, outputValue);
}
}
```
最后,在Driver程序中配置MapReduce作业的输入输出路径、Mapper和Reducer类,并提交作业到Hadoop集群运行即可。代码示例如下:
```java
public class PopulationJob {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "PopulationJob");
job.setJarByClass(PopulationJob.class);
job.setMapperClass(PopulationMapper.class);
job.setReducerClass(PopulationReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
2. 统计2008年所有州人口密度,并按降序排列
同样地,需要编写一个Mapper程序,将数据文件中的每一行按照州分组,输出键值对<州, 人口数量>。代码示例如下:
```java
public class DensityMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
private Text outputKey = new Text();
private LongWritable outputValue = new LongWritable();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] fields = value.toString().split(",");
String year = fields[0];
String state = fields[1];
long population = Long.parseLong(fields[2]);
if ("2008".equals(year)) {
outputKey.set(state);
outputValue.set(population);
context.write(outputKey, outputValue);
}
}
}
```
然后,需要编写一个Reducer程序,将Mapper输出的键值对按照州分组,并将人口数量相加得到每个州的总人口数量。代码示例如下:
```java
public class DensityReducer extends Reducer<Text, LongWritable, Text, DoubleWritable> {
private DoubleWritable outputValue = new DoubleWritable();
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
long sum = 0;
for (LongWritable value : values) {
sum += value.get();
}
double density = (double) sum / 1000000; // 人口密度 = 总人口数量 / 平方英里
outputValue.set(density);
context.write(key, outputValue);
}
}
```
最后,在Driver程序中配置MapReduce作业的输入输出路径、Mapper和Reducer类,并将Reducer输出的键值对按照值降序排列输出到文件中。代码示例如下:
```java
public class DensityJob {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "DensityJob");
job.setJarByClass(DensityJob.class);
job.setMapperClass(DensityMapper.class);
job.setReducerClass(DensityReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DoubleWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
Job sortJob = Job.getInstance(conf, "DensitySortJob");
sortJob.setJarByClass(DensityJob.class);
sortJob.setMapperClass(InverseMapper.class);
sortJob.setReducerClass(DescendingSortReducer.class);
sortJob.setOutputKeyClass(DoubleWritable.class);
sortJob.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(sortJob, new Path(args[1]));
FileOutputFormat.setOutputPath(sortJob, new Path(args[2]));
sortJob.waitForCompletion(true);
}
}
```
注意,为了按照降序排列,还需要编写一个InverseMapper类和一个DescendingSortReducer类,代码示例如下:
```java
public class InverseMapper extends Mapper<LongWritable, Text, DoubleWritable, Text> {
private DoubleWritable outputKey = new DoubleWritable();
private Text outputValue = new Text();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] fields = value.toString().split("\t");
String state = fields[0];
double density = Double.parseDouble(fields[1]);
outputKey.set(-density); // 取相反数以实现降序排列
outputValue.set(state);
context.write(outputKey, outputValue);
}
}
public class DescendingSortReducer extends Reducer<DoubleWritable, Text, Text, DoubleWritable> {
private Text outputKey = new Text();
@Override
protected void reduce(DoubleWritable key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
double density = -key.get(); // 取相反数还原为原来的值
for (Text value : values) {
outputKey.set(value);
context.write(outputKey, new DoubleWritable(density));
}
}
}
```
这样,就完成了两个任务的处理。希望这些代码对你有所帮助!
阅读全文