基于matlab gui界面孤立词识别程序代码
时间: 2023-08-10 10:02:45 浏览: 121
以下是一个基于MATLAB GUI界面的孤立词识别程序代码的示例:
```matlab
function varargout = isolated_word_recognition(varargin)
% ISOLATED_WORD_RECOGNITION MATLAB code for isolated_word_recognition.fig
% ISOLATED_WORD_RECOGNITION, by itself, creates a new ISOLATED_WORD_RECOGNITION or raises the existing
% singleton*.
%
% H = ISOLATED_WORD_RECOGNITION returns the handle to a new ISOLATED_WORD_RECOGNITION or the handle to
% the existing singleton*.
%
% ISOLATED_WORD_RECOGNITION('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in ISOLATED_WORD_RECOGNITION.M with the given input arguments.
%
% ISOLATED_WORD_RECOGNITION('Property','Value',...) creates a new ISOLATED_WORD_RECOGNITION or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before isolated_word_recognition_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to isolated_word_recognition_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help isolated_word_recognition
% Last Modified by GUIDE v2.5 16-Aug-2021 20:40:25
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @isolated_word_recognition_OpeningFcn, ...
'gui_OutputFcn', @isolated_word_recognition_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before isolated_word_recognition is made visible.
function isolated_word_recognition_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to isolated_word_recognition (see VARARGIN)
% Choose default command line output for isolated_word_recognition
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes isolated_word_recognition wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% Initialize the recorder object
handles.recorder = audiorecorder(8000, 16, 1);
% Set the recording time to 1 second
handles.recording_time = 1;
% Update handles structure
guidata(hObject, handles);
% --- Outputs from this function are returned to the command line.
function varargout = isolated_word_recognition_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in record_button.
function record_button_Callback(hObject, eventdata, handles)
% hObject handle to record_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Start recording
record(handles.recorder, handles.recording_time);
% Change the button text
set(hObject, 'String', 'Recording...');
% Update handles structure
guidata(hObject, handles);
% --- Executes on button press in stop_button.
function stop_button_Callback(hObject, eventdata, handles)
% hObject handle to stop_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Stop recording
stop(handles.recorder);
% Change the button text
set(handles.record_button, 'String', 'Record');
% Get the audio data
audio_data = getaudiodata(handles.recorder);
% Play back the recorded audio
soundsc(audio_data, handles.recorder.SampleRate);
% Extract MFCC features from the audio data
mfcc_features = mfcc(audio_data, handles.recorder.SampleRate);
% Classify the spoken word using a pre-trained model
load('isolated_word_recognition_model.mat'); % Load the model
predicted_label = predict(model, mfcc_features'); % Predict the label
% Display the predicted label
set(handles.predicted_label_text, 'String', predicted_label);
% Update handles structure
guidata(hObject, handles);
```
在此示例中,我们使用MATLAB的GUI工具箱创建了一个GUI界面。用户可以使用该界面录制一个单词的语音,并使用预先训练的模型对该单词进行分类。该界面包括以下组件:
- `record_button`:开始录制语音的按钮
- `stop_button`:停止录制语音的按钮
- `predicted_label_text`:显示预测单词标签的文本框
在此示例中,我们使用了一个名为`mfcc`的函数来提取MFCC特征。这是一个自定义函数,需要单独下载和添加到MATLAB路径中。此外,我们还使用了一个预先训练的分类模型,该模型将MFCC特征映射到单词标签。该模型存储在一个名为`isolated_word_recognition_model.mat`的MAT文件中,需要与此代码一起下载并保存在同一目录中。
阅读全文