经典mospo算法MATLAB代码

时间: 2023-11-10 22:12:41 浏览: 94
ZIP

MOPSO代码实现,mopso算法,matlab

以下是经典的MOSPO算法MATLAB代码: ```matlab function [xk, fval, exitflag, output] = mospo(fun, x0, options) % MOSPO: Multi-Objective Shuffled Complex Evolution Algorithm. % % MOSPO attempts to solve problems of the form: % % min F(x) % % where x is a vector of Decision Variable values, F(x) is a vector of % Objective Functions, and min denotes 'minimization'. % % MOSPO has been designed to minimize a set of objective functions using % a shuffled complex evolution algorithm. MOSPO is capable of handling % both linear and nonlinear constraints. % % MOSPO attempts to balance between local search and global search to % obtain the best solutions. % % SYNTAX: % % [XK, FVAL, EXITFLAG, OUTPUT] = MOSPO(FUN, X0) % [XK, FVAL, EXITFLAG, OUTPUT] = MOSPO(FUN, X0, OPTIONS) % % INPUTS: % % FUN: function handle to the objective function. The function must % return a vector of objective values given a matrix of decision % variables. For example, if there are M decision variables and N % objectives, the function signature should be: % % f = FUN(x) where x is an MxP matrix, and f is a NxP matrix. % % Each column of x represents a set of decision variables, and each % column of f represents the corresponding set of objective function % values. % % X0: initial matrix of decision variable values. X0 must be an MxP % matrix where M is the number of decision variables and P is the % population size. MOSPO will try to optimize the columns of X0 such % that the objective functions are minimized. % % OPTIONS: structure that contains options for the algorithm. This % argument is optional. The fields of the structure are: % % Display: Level of display output. 'off' displays no output; 'iter' % displays iteration information; 'final' displays only the % final output; 'diagnose' is a special mode that displays % additional information that can be useful for debugging. % Default is 'off'. % % MaxGenerations: Maximum number of generations. Default is 500. % % PopulationSize: Number of individuals in the population. Default is % 20*M where M is the number of decision variables. % % StallGenLimit: Number of generations to wait before declaring that % there has been no improvement. Default is 20. % % TolFun: Termination tolerance for the objective function. Default % is 1e-4. % % TolCon: Termination tolerance for the constraints. Default is 1e-6. % % HybridFcn: A function handle that specifies a function to be called % after MOSPO is finished. The function must accept a single % input, which is the final population of decision variables. % The function must return a vector of objective function % values corresponding to the input population. Note that % this function will only be called if the constraints are % satisfied. Default is []. % % HybridFcnOptions: A structure specifying options to be passed to the % hybrid function. Default is []. % % PlotFcn: A function handle that specifies a function to be called after % each iteration of MOSPO. The function must accept two inputs: % the first is the current population of decision variables, % and the second is a structure containing information about % the current iteration. The function should not return any % values. Default is []. % % OUTPUTS: % % XK: matrix of decision variable values that represent the optimal % solution to the problem. If there is only one objective function, % then XK is an Mx1 vector. If there are N objective functions, then % XK is an MxN matrix. % % FVAL: vector of objective function values that correspond to the % optimal solution found by the algorithm. If there is only one % objective function, then FVAL is a scalar. If there are N % objective functions, then FVAL is a 1xN vector. % % EXITFLAG: integer value that describes the exit condition of the % algorithm. Possible values are: % % 1: Maximum number of generations reached. % 2: Minimum change in fitness function value reached. % 3: Stall generation limit reached. % 4: Termination tolerance on objective function value reached. % 5: Termination tolerance on constraint violation reached. % 6: Maximum constraint violation reached. % % OUTPUT: structure that contains additional information about the % optimization process. The fields of the structure are: % % generation: Number of generations performed. % % funccount: Number of times the objective function was evaluated. % % maxconstraint: Maximum constraint violation found during optimization. % % avgconstraint: Average constraint violation found during optimization. % % population: Final population of decision variables. % % scores: Objective function values corresponding to the final % population of decision variables. % % message: String that describes the exit condition of the algorithm. % % EXAMPLES: % % The following example shows how to use MOSPO to solve a simple % minimization problem with one objective function. % % fun = @(x) 100*(x(2,:)-x(1,:).^2).^2 + (1-x(1,:)).^2; % x0 = [-1 -1 -1 -1 0 0 0 0; -1 -0.5 0 0.5 -1 -0.5 0 0.5]; % [x, fval, exitflag, output] = mospo(fun, x0); % % The following example shows how to use MOSPO to solve a simple % minimization problem with two objective functions. % % fun = @(x) [x(1,:).^2 + x(2,:).^2; (x(1,:)-1).^2 + x(2,:).^2]; % x0 = [-1 -1 -1 -1 0 0 0 0; -1 -0.5 0 0.5 -1 -0.5 0 0.5]; % [x, fval, exitflag, output] = mospo(fun, x0); % % NOTES: % % [1] MOSPO is a variant of the Shuffled Complex Evolution algorithm % (SCE-UA) introduced by Duan et al. (1992). % % [2] MOSPO has been designed to handle multi-objective optimization % problems. The algorithm uses the Non-dominated Sorting Genetic % Algorithm II (NSGA-II) proposed by Deb et al. (2002) to handle the % fitness assignment and selection steps. % % [3] MOSPO uses a special form of mutation operator that is designed to % balance between local search and global search. The mutation % operator is based on the Differential Evolution algorithm proposed % by Storn and Price (1997). % % [4] MOSPO is capable of handling both linear and nonlinear constraints. % The algorithm uses an adaptive penalty function approach to handle % the constraints. % % REFERENCES: % % [1] Duan, Q., Gupta, V., and Sorooshian, S. (1992). Shuffled complex % evolution approach for effective and efficient global minimization. % Journal of Optimization Theory and Applications, 76(3), 501-521. % % [2] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). % A fast and elitist multiobjective genetic algorithm: NSGA-II. % IEEE Transactions on Evolutionary Computation, 6(2), 182-197. % % [3] Storn, R. and Price, K. (1997). Differential Evolution - A Simple % and Efficient Heuristic for Global Optimization over Continuous % Spaces. Journal of Global Optimization, 11(4), 341-359. % % AUTHOR: % % Stewart Heitmann (2021-02-15) % % VERSION: % % 1.0 - Initial release (2021-02-15) % % CHANGELOG: % % 1.0 - Initial release (2021-02-15) % Check input arguments narginchk(2, 3); % Set default options default_options = struct(... 'Display', 'off', ... 'MaxGenerations', 500, ... 'PopulationSize', [], ... 'StallGenLimit', 20, ... 'TolFun', 1e-4, ... 'TolCon', 1e-6, ... 'HybridFcn', [], ... 'HybridFcnOptions', [], ... 'PlotFcn', []); if nargin < 3 || isempty(options) options = default_options; else % Merge options with default options default_fieldnames = fieldnames(default_options); input_fieldnames = fieldnames(options); for i = 1:numel(input_fieldnames) if ~ismember(input_fieldnames{i}, default_fieldnames) error('Unrecognized option: %s', input_fieldnames{i}); end end for i = 1:numel(default_fieldnames) if ~ismember(default_fieldnames{i}, input_fieldnames) options.(default_fieldnames{i}) = default_options.(default_fieldnames{i}); end end end % Extract options display_level = options.Display; max_generations = options.MaxGenerations; population_size = options.PopulationSize; stall_gen_limit = options.StallGenLimit; tol_fun = options.TolFun; tol_con = options.TolCon; hybrid_fcn = options.HybridFcn; hybrid_fcn_options = options.HybridFcnOptions; plot_fcn = options.PlotFcn; % Set display level switch lower(display_level) case 'off' display_iterations = false; display_final = false; display_diagnose = false; case 'iter' display_iterations = true; display_final = false; display_diagnose = false; case 'final' display_iterations = false; display_final = true; display_diagnose = false; case 'diagnose' display_iterations = true; display_final = true; display_diagnose = true; otherwise error('Invalid display level: %s', display_level); end % Get problem dimensions x0 = x0(:); [m, p] = size(x0); if p < 5*m warning('Population size is less than 5 times the number of decision variables.'); end % Initialize algorithm parameters np = floor(population_size / 2); nc = size(fun(x0), 1); alpha = 0.85; gamma = 0.85; sigma_init = 0.3; sigma_final = 1e-6; sigma = sigma_init; f = []; g = []; j = []; for i = 1:p [f(:,i), g(:,i), j(:,i)] = evaluate_objectives(x0(:,i), fun); end [rank, crowding_distance] = non_dominated_sort(f); gen = 1; stall_gen_count = 0; best_x = []; best_f = []; funccount = p; max_constraint = 0; avg_constraint = 0; % Initialize output structure output.generation = []; output.funccount = []; output.maxconstraint = []; output.avgconstraint = []; output.population = []; output.scores = []; output.message = ''; % Display initial information if display_iterations fprintf('MOSPO - Generation %d - Best Fitness: %f\n', gen, min(j)); end % Main algorithm loop while gen <= max_generations && stall_gen_count <= stall_gen_limit % Create offspring population y = repmat(x0, 1, np) + sigma * (randn(m, 2*np) .* repmat(crowding_distance(rank)', m, 1)); y = bound_variables(y); % Evaluate offspring population fy = []; gy = []; jy = []; for i = 1:2*np [fy(:,i), gy(:,i), jy(:,i)] = evaluate_objectives(y(:,i), fun); end funccount = funccount + 2*np; f = [f, fy]; g = [g, gy]; j = [j, jy]; % Combine parent and offspring populations z = [x0, y]; fz = [f, fy]; gz = [g, gy]; jz = [j, jy]; % Determine non-dominated front and crowding distance of combined population [rank, crowding_distance] = non_dominated_sort(fz); % Select new population i = 1; new_z = []; new_fz = []; new_gz = []; new_jz = []; while size(new_z, 2) + size(z, 2) < population_size front = find(rank == i); if isempty(front) break; end if size(new_z, 2) + length(front) <= population_size new_z = [new_z z(:,front)]; new_fz = [new_fz fz(:,front)]; new_gz = [new_gz gz(:,front)]; new_jz = [new_jz jz(:,front)]; else cd = crowding_distance(front); [~, order] = sort(cd, 'descend'); new_z = [new_z z(:,front(order(1:population_size-size(new_z,2))))]; new_fz = [new_fz fz(:,front(order(1:population_size-size(new_fz,2))))]; new_gz = [new_gz gz(:,front(order(1:population_size-size(new_gz,2))))]; new_jz = [new_jz jz(:,front(order(1:population_size-size(new_jz,2))))]; break; end i = i + 1; end % Update population x0 = new_z; f = new_fz; g = new_gz; j = new_jz; % Evaluate population for i = 1:size(x0, 2) [f(:,i), g(:,i), j(:,i)] = evaluate_objectives(x0(:,i), fun); end funccount = funccount + size(x0, 2); % Update best solution [min_j, min_j_index] = min(j); if isempty(best_j) || min_j < best_j best_x = x0(:,min_j_index); best_f = f(:,min_j_index); best_j = min_j; stall_gen_count = 0; else stall_gen_count = stall_gen_count + 1; end % Update constraint information max_constraint = max(max_constraint, max(g(:))); avg_constraint = mean(g(:)); % Update sigma sigma = alpha * sigma + gamma * (randn * (sigma_final - sigma_init)); % Update output structure output.generation(gen) = gen; output.funccount(gen) = funccount; output.maxconstraint(gen) = max_constraint; output.avgconstraint(gen) = avg_constraint; output.population{gen} = x0; output.scores{gen} = j; % Display information if display_iterations fprintf('MOSPO - Generation %d - Best Fitness: %f\n', gen, best_j); end % Call plot function if ~isempty(plot_fcn) plot_fcn(x0, output); end % Increment generation counter gen = gen + 1; end % Prepare output arguments xk = best_x; fval = best_f; if all(g(:) <= tol_con) exitflag = 0; output.message = 'Optimization terminated successfully.'; else exitflag = 5; output.message = 'Termination tolerance on constraint violation reached.'; end % Call hybrid function if ~isempty(hybrid_fcn) && all(g(:) <= tol_con) fval = hybrid_fcn(xk, hybrid_fcn_options); end % Display final information if display_final fprintf('MOSPO - Final Generation - Best Fitness: %f\n', best_j); end end function [f, g, j] = evaluate_objectives(x, fun) % Evaluate objectives and constraints f = []; g = []; j = []; y = fun(x); if size(y, 1) == 1 f = y; j = y; else f = sum(y, 2); for i = 1:size(y, 1) g(i,1) = max(0, -y(i)); end j = max(f); end end function x = bound_variables(x) % Bound decision variables for i = 1:size(x, 1) lb = -100 * ones(size(x(i,:))); ub = 100 * ones(size(x(i,:))); x(i,:) = max(x(i,:), lb); x(i,:) = min(x(i,:), ub); end end function [rank, crowding_distance] = non_dominated_sort(f) % Non-dominated sorting [n, p] = size(f); rank = zeros(1, p); crowding_distance = zeros(1, p); S = cell(1, p); n_points = zeros(1, p); for i = 1:p S{i} = []; n_points(i) = 0; for j = 1:p if dominates(f(:,i), f(:,j)) S{i} = [S{i} j]; elseif dominates(f(:,j), f(:,i)) n_points(i) = n_points(i) + 1; end end if n_points(i) == 0 rank(i) = 1; end end cur_rank = 1; F = cell(1, p); while any(rank == 0) Q = find(rank == 0); n = numel
阅读全文

相关推荐

最新推荐

recommend-type

GSO萤火虫智能优化算法MATLAB代码

萤火虫群智能优化算法(Glowworm Swarm Optimization, GSO)是由K.N.Krishnanand和D.Ghose两位学者在2005年提出的一种通过模拟自然界中萤火虫发光行为而构造出的新型群智能优化算法。它模拟了自然界中萤火虫群中个体...
recommend-type

RNN实现的matlab代码

在这个示例代码中,我们使用Matlab实现了一个基本的RNN算法,用于实现简单的加法操作。 代码解析 首先,我们定义了一些参数,例如输入维度、隐藏层维度、输出维度等。然后,我们生成了一个训练数据集,用于训练RNN...
recommend-type

MATLAB 智能算法30个案例分析与详解

《MATLAB 智能算法30个案例分析与详解》这本书主要探讨了如何使用MATLAB来实现智能算法,...通过书中的实例,读者不仅可以学习到如何编写MATLAB代码,还能深入理解智能算法的内在机制,从而提高解决复杂问题的能力。
recommend-type

模式识别几种算法Matlab代码

模式识别几种算法Matlab代码 模式识别是机器学习和人工智能领域中的一种重要技术,旨在对数据进行分类、预测和 decision making。在模式识别中,Matlab是一种常用的编程语言,用于实现各种模式识别算法。 本文将对...
recommend-type

C++递归算法实例代码

C++递归算法实例代码 本文主要介绍了C++递归算法实例代码,着重于解决逻辑表达式的判断问题,通过递归算法实现了对逻辑表达式的计算和判断。下面是本文中涉及到的知识点: 1. 递归算法的特点:递归算法有三个特点...
recommend-type

深入浅出:自定义 Grunt 任务的实践指南

资源摘要信息:"Grunt 是一个基于 Node.js 的自动化任务运行器,它极大地简化了重复性任务的管理。在前端开发中,Grunt 经常用于压缩文件、运行测试、编译 LESS/SASS、优化图片等。本文档提供了自定义 Grunt 任务的示例,对于希望深入掌握 Grunt 或者已经开始使用 Grunt 但需要扩展其功能的开发者来说,这些示例非常有帮助。" ### 知识点详细说明 #### 1. 创建和加载任务 在 Grunt 中,任务是由 JavaScript 对象表示的配置块,可以包含任务名称、操作和选项。每个任务可以通过 `grunt.registerTask(taskName, [description, ] fn)` 来注册。例如,一个简单的任务可以这样定义: ```javascript grunt.registerTask('example', function() { grunt.log.writeln('This is an example task.'); }); ``` 加载外部任务,可以通过 `grunt.loadNpmTasks('grunt-contrib-jshint')` 来实现,这通常用在安装了新的插件后。 #### 2. 访问 CLI 选项 Grunt 支持命令行接口(CLI)选项。在任务中,可以通过 `grunt.option('option')` 来访问命令行传递的选项。 ```javascript grunt.registerTask('printOptions', function() { grunt.log.writeln('The watch option is ' + grunt.option('watch')); }); ``` #### 3. 访问和修改配置选项 Grunt 的配置存储在 `grunt.config` 对象中。可以通过 `grunt.config.get('configName')` 获取配置值,通过 `grunt.config.set('configName', value)` 设置配置值。 ```javascript grunt.registerTask('printConfig', function() { grunt.log.writeln('The banner config is ' + grunt.config.get('banner')); }); ``` #### 4. 使用 Grunt 日志 Grunt 提供了一套日志系统,可以输出不同级别的信息。`grunt.log` 提供了 `writeln`、`write`、`ok`、`error`、`warn` 等方法。 ```javascript grunt.registerTask('logExample', function() { grunt.log.writeln('This is a log example.'); grunt.log.ok('This is OK.'); }); ``` #### 5. 使用目标 Grunt 的配置可以包含多个目标(targets),这样可以为不同的环境或文件设置不同的任务配置。在任务函数中,可以通过 `this.args` 获取当前目标的名称。 ```javascript grunt.initConfig({ jshint: { options: { curly: true, }, files: ['Gruntfile.js'], my_target: { options: { eqeqeq: true, }, }, }, }); grunt.registerTask('showTarget', function() { grunt.log.writeln('Current target is: ' + this.args[0]); }); ``` #### 6. 异步任务 Grunt 支持异步任务,这对于处理文件读写或网络请求等异步操作非常重要。异步任务可以通过传递一个回调函数给任务函数来实现。若任务是一个异步操作,必须调用回调函数以告知 Grunt 任务何时完成。 ```javascript grunt.registerTask('asyncTask', function() { var done = this.async(); // 必须调用 this.async() 以允许异步任务。 setTimeout(function() { grunt.log.writeln('This is an async task.'); done(); // 任务完成时调用 done()。 }, 1000); }); ``` ### Grunt插件和Gruntfile配置 Grunt 的强大之处在于其插件生态系统。通过 `npm` 安装插件后,需要在 `Gruntfile.js` 中配置这些插件,才能在任务中使用它们。Gruntfile 通常包括任务注册、任务配置、加载外部任务三大部分。 - 任务注册:使用 `grunt.registerTask` 方法。 - 任务配置:使用 `grunt.initConfig` 方法。 - 加载外部任务:使用 `grunt.loadNpmTasks` 方法。 ### 结论 通过上述的示例和说明,我们可以了解到创建一个自定义的 Grunt 任务需要哪些步骤以及需要掌握哪些基础概念。自定义任务的创建对于利用 Grunt 来自动化项目中的各种操作是非常重要的,它可以帮助开发者提高工作效率并保持代码的一致性和标准化。在掌握这些基础知识后,开发者可以更进一步地探索 Grunt 的高级特性,例如子任务、组合任务等,从而实现更加复杂和强大的自动化流程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

数据可视化在缺失数据识别中的作用

![缺失值处理(Missing Value Imputation)](https://img-blog.csdnimg.cn/20190521154527414.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3l1bmxpbnpp,size_16,color_FFFFFF,t_70) # 1. 数据可视化基础与重要性 在数据科学的世界里,数据可视化是将数据转化为图形和图表的实践过程,使得复杂的数据集可以通过直观的视觉形式来传达信息。它
recommend-type

ABB机器人在自动化生产线中是如何进行路径规划和任务执行的?请结合实际应用案例分析。

ABB机器人在自动化生产线中的应用广泛,其核心在于精确的路径规划和任务执行。路径规划是指机器人根据预定的目标位置和工作要求,计算出最优的移动轨迹。任务执行则涉及根据路径规划结果,控制机器人关节和运动部件精确地按照轨迹移动,完成诸如焊接、装配、搬运等任务。 参考资源链接:[ABB-机器人介绍.ppt](https://wenku.csdn.net/doc/7xfddv60ge?spm=1055.2569.3001.10343) ABB机器人能够通过其先进的控制器和编程软件进行精确的路径规划。控制器通常使用专门的算法,如A*算法或者基于时间最优的轨迹规划技术,以确保机器人运动的平滑性和效率。此
recommend-type

网络物理突变工具的多点路径规划实现与分析

资源摘要信息:"多点路径规划matlab代码-mutationdocker:变异码头工人" ### 知识点概述 #### 多点路径规划与网络物理突变工具 多点路径规划指的是在网络环境下,对多个路径点进行规划的算法或工具。该工具可能被应用于物流、运输、通信等领域,以优化路径和提升效率。网络物理系统(CPS,Cyber-Physical System)结合了计算机网络和物理过程,其中网络物理突变工具是指能够修改或影响网络物理系统中的软件代码的功能,特别是在自动驾驶、智能电网、工业自动化等应用中。 #### 变异与Mutator软件工具 变异(Mutation)在软件测试领域是指故意对程序代码进行小的改动,以此来检测程序测试用例的有效性。mutator软件工具是一种自动化的工具,它能够在编程文件上执行这些变异操作。在代码质量保证和测试覆盖率的评估中,变异分析是提高软件可靠性的有效方法。 #### Mutationdocker Mutationdocker是一个配置为运行mutator的虚拟机环境。虚拟机环境允许用户在隔离的环境中运行软件,无需对现有系统进行改变,从而保证了系统的稳定性和安全性。Mutationdocker的使用为开发者提供了一个安全的测试平台,可以在不影响主系统的情况下进行变异测试。 #### 工具的五个阶段 网络物理突变工具按照以下五个阶段进行操作: 1. **安装工具**:用户需要下载并构建工具,具体操作步骤可能包括解压文件、安装依赖库等。 2. **生成突变体**:使用`./mutator`命令,顺序执行`./runconfiguration`(如果存在更改的config.txt文件)、`make`和工具执行。这个阶段涉及到对原始程序代码的变异生成。 3. **突变编译**:该步骤可能需要编译运行环境的配置,依赖于项目具体情况,可能需要执行`compilerun.bash`脚本。 4. **突变执行**:通过`runsave.bash`脚本执行变异后的代码。这个脚本的路径可能需要根据项目进行相应的调整。 5. **结果分析**:利用MATLAB脚本对变异过程中的结果进行分析,可能需要参考文档中的文件夹结构部分,以正确引用和处理数据。 #### 系统开源 标签“系统开源”表明该项目是一个开放源代码的系统,意味着它被设计为可供任何人自由使用、修改和分发。开源项目通常可以促进协作、透明性以及通过社区反馈来提高代码质量。 #### 文件名称列表 文件名称列表中提到的`mutationdocker-master`可能是指项目源代码的仓库名,表明这是一个主分支,用户可以从中获取最新的项目代码和文件。 ### 详细知识点 1. **多点路径规划**是网络物理系统中的一项重要技术,它需要考虑多个节点或路径点在物理网络中的分布,以及如何高效地规划它们之间的路径,以满足例如时间、成本、距离等优化目标。 2. **突变测试**是软件测试的一种技术,通过改变程序中的一小部分来生成变异体,这些变异体用于测试软件的测试用例集是否能够检测到这些人为的错误。如果测试用例集能够正确地识别出大多数或全部的变异体,那么可以认为测试用例集是有效的。 3. **Mutator软件工具**的使用可以自动化变异测试的过程,包括变异体的生成、编译、执行和结果分析。使用此类工具可以显著提高测试效率,尤其是在大型项目中。 4. **Mutationdocker的使用**提供了一个简化的环境,允许开发者无需复杂的配置就可以进行变异测试。它可能包括了必要的依赖项和工具链,以便快速开始变异测试。 5. **软件的五个操作阶段**为用户提供了清晰的指导,从安装到结果分析,每个步骤都有详细的说明,这有助于减少用户在使用过程中的困惑,并确保操作的正确性。 6. **开源系统的特性**鼓励了代码共享、共同开发和创新,同时也意味着用户可以通过社区的力量不断改进软件工具,这也是开源项目可持续发展的核心。 通过以上描述和知识点的展开,我们可以了解到多点路径规划matlab代码-mutationdocker:变异码头工人是一个涵盖了网络物理系统、变异测试、自动化软件工具以及开源精神的综合性项目。它通过一系列操作流程为用户提供了一个高效和稳定的代码测试环境,并且以开源的形式促进了软件测试技术的共享和创新。