用matlab实现一幅灰度图像的压缩,要求:1、不能直接采用imwrite等函数一句话把图像进行压缩; 2、代码中能体现DCT、huffman等步骤,步骤中功能函数可以直接调用; 3、对比显示效果,计算压缩比例。
时间: 2024-02-07 10:03:29 浏览: 68
好的,我可以帮您解答这个问题。以下是一份matlab实现的示例代码,其中包括DCT、量化和Huffman编码的实现以及解码和显示压缩效果的部分:
```matlab
% 读取图像并转为灰度图像
im = imread('lena.jpg');
gray_im = rgb2gray(im);
% 定义DCT变换矩阵
N = 8;
T = dctmtx(N);
% 对图像进行分块,每块大小为8x8
[h, w] = size(gray_im);
n_h = floor(h/N);
n_w = floor(w/N);
blocks = cell(n_h, n_w);
for i = 1:n_h
for j = 1:n_w
blocks{i,j} = gray_im((i-1)*N+1:i*N, (j-1)*N+1:j*N);
end
end
% 对每个块进行DCT变换
dct_blocks = cell(n_h, n_w);
for i = 1:n_h
for j = 1:n_w
dct_blocks{i,j} = T * double(blocks{i,j}) * T';
end
end
% 定义量化矩阵
Q = [16 11 10 16 24 40 51 61;
12 12 14 19 26 58 60 55;
14 13 16 24 40 57 69 56;
14 17 22 29 51 87 80 62;
18 22 37 56 68 109 103 77;
24 35 55 64 81 104 113 92;
49 64 78 87 103 121 120 101;
72 92 95 98 112 100 103 99];
% 对DCT系数进行量化
q_blocks = cell(n_h, n_w);
for i = 1:n_h
for j = 1:n_w
q_blocks{i,j} = round(dct_blocks{i,j} ./ (Q*8));
end
end
% 对量化后的系数进行编码(这里采用Huffman编码)
[counts, symbols] = hist([q_blocks{:}], -128:127);
p = counts ./ sum(counts);
[dict, ~] = huffmandict(symbols, p);
huff_codes = cell(n_h, n_w);
for i = 1:n_h
for j = 1:n_w
huff_codes{i,j} = huffmanenco(q_blocks{i,j}(:), dict);
end
end
% 将编码后的数据写入文件
huff_bits = cellfun(@numel, huff_codes);
total_bits = sum(huff_bits);
fid = fopen('lena_compressed.bin', 'w');
fwrite(fid, [h w n_h n_w], 'uint16');
fwrite(fid, huff_bits, 'uint16');
for i = 1:n_h
for j = 1:n_w
fwrite(fid, huff_codes{i,j}, 'ubit1');
end
end
fclose(fid);
% 从文件中读取压缩数据并解码
fid = fopen('lena_compressed.bin', 'r');
[h, w, n_h, n_w] = fread(fid, 4, 'uint16');
huff_bits = fread(fid, n_h*n_w, 'uint16');
huff_codes = cell(n_h, n_w);
for i = 1:n_h
for j = 1:n_w
huff_codes{i,j} = fread(fid, huff_bits(i+(j-1)*n_h), 'ubit1');
end
end
fclose(fid);
% 对编码数据进行解码
q_blocks = cell(n_h, n_w);
for i = 1:n_h
for j = 1:n_w
q_blocks{i,j} = huffmandeco(huff_codes{i,j}, dict);
q_blocks{i,j} = reshape(q_blocks{i,j}, N, N);
end
end
% 对量化后的系数进行逆量化和逆DCT变换
rec_blocks = cell(n_h, n_w);
for i = 1:n_h
for j = 1:n_w
rec_blocks{i,j} = q_blocks{i,j} .* (Q*8);
rec_blocks{i,j} = T' * rec_blocks{i,j} * T;
end
end
% 将还原后的块拼接成完整图像
rec_im = zeros(h, w);
for i = 1:n_h
for j = 1:n_w
rec_im((i-1)*N+1:i*N, (j-1)*N+1:j*N) = rec_blocks{i,j};
end
end
% 显示原始图像和还原后的图像
figure;
subplot(121); imshow(gray_im); title('Original Image');
subplot(122); imshow(uint8(rec_im)); title('Reconstructed Image');
% 计算压缩比例
bit_rate = total_bits / (h*w);
fprintf('Compression ratio: %.2f:1\n', 8 / bit_rate);
```
这份代码将图像分块、进行DCT变换、量化和Huffman编码,并将编码结果写入文件。然后从文件中读取编码数据并进行解码、逆量化和逆DCT变换,并将还原后的块拼接成完整图像。最后,显示原始图像和还原后的图像,并计算压缩比例。您可以根据自己的需求修改和优化代码。
阅读全文