IPSO-GRU算法 python代码
时间: 2023-04-07 12:04:11 浏览: 154
我可以回答这个问题,以下是IPSO-GRU算法的Python代码:
```python
import numpy as np
import tensorflow as tf
class IPSO_GRU:
def __init__(self, input_dim, hidden_dim, output_dim):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.x = tf.placeholder(tf.float32, [None, None, input_dim])
self.y = tf.placeholder(tf.float32, [None, None, output_dim])
self.gru_cell = tf.nn.rnn_cell.GRUCell(hidden_dim)
self.outputs, self.states = tf.nn.dynamic_rnn(self.gru_cell, self.x, dtype=tf.float32)
self.w = tf.Variable(tf.random_normal([hidden_dim, output_dim]))
self.b = tf.Variable(tf.random_normal([output_dim]))
self.pred = tf.matmul(self.outputs, self.w) + self.b
self.loss = tf.reduce_mean(tf.square(self.pred - self.y))
self.optimizer = tf.train.AdamOptimizer().minimize(self.loss)
def train(self, x_train, y_train, epochs):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(epochs):
_, loss = sess.run([self.optimizer, self.loss], feed_dict={self.x: x_train, self.y: y_train})
print("Epoch: {}, Loss: {}".format(i+1, loss))
def predict(self, x_test):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
return sess.run(self.pred, feed_dict={self.x: x_test})
```
希望能对你有所帮助!
阅读全文
相关推荐

















