数学题,使用遗传算法或者模拟退火算法求一元函数f(x)=x²sin(30x)+1.5在区间[−1,2]上的最大值,可以用python实现,每一步骤要有数学解析。
时间: 2024-02-15 14:04:10 浏览: 69
遗传算法求取目标函数F(s)=21.5+x1_sin(4_pi_x1)+x2_sin(20_pi_x2)最值
5星 · 资源好评率100%
好的,我们可以使用Python实现遗传算法和模拟退火算法来求解这个问题。具体实现步骤如下:
1. 遗传算法实现:
```python
import random
import math
# 定义适应度函数
def fitness(x):
return x**2 * math.sin(30*x) + 1.5
# 定义个体类
class Individual:
def __init__(self, x):
self.x = x
self.fitness = fitness(x)
# 交叉操作
def crossover(self, other):
alpha = random.random()
x = alpha * self.x + (1 - alpha) * other.x
return Individual(x)
# 变异操作
def mutate(self):
sigma = (2 * math.log(2) / math.pi)**0.5 / 10
x = self.x + random.gauss(0, sigma)
x = max(-1, min(2, x))
return Individual(x)
# 定义遗传算法类
class GA:
def __init__(self, pop_size, elite_size, max_iter):
self.pop_size = pop_size
self.elite_size = elite_size
self.max_iter = max_iter
# 初始化种群
def init_population(self):
population = []
for i in range(self.pop_size):
x = random.uniform(-1, 2)
population.append(Individual(x))
return population
# 选择操作
def selection(self, population):
elite = sorted(population, key=lambda x: x.fitness, reverse=True)[:self.elite_size]
return elite
# 遗传操作
def genetic(self, elite):
offspring = []
while len(offspring) < self.pop_size:
parent1 = random.choice(elite)
parent2 = random.choice(elite)
child = parent1.crossover(parent2)
child = child.mutate()
offspring.append(child)
return offspring
# 运行遗传算法
def run(self):
population = self.init_population()
for i in range(self.max_iter):
elite = self.selection(population)
offspring = self.genetic(elite)
population = elite + offspring
best = sorted(population, key=lambda x: x.fitness, reverse=True)[0]
return best.x, best.fitness
```
2. 模拟退火算法实现:
```python
import random
import math
# 定义适应度函数
def fitness(x):
return x**2 * math.sin(30*x) + 1.5
# 定义模拟退火算法类
class SA:
def __init__(self, init_temp, min_temp, alpha, max_iter):
self.init_temp = init_temp
self.min_temp = min_temp
self.alpha = alpha
self.max_iter = max_iter
# 生成新解
def neighbor(self, x):
sigma = (2 * math.log(2) / math.pi)**0.5 / 10
x_new = x + random.gauss(0, sigma)
x_new = max(-1, min(2, x_new))
return x_new
# 运行模拟退火算法
def run(self):
x = random.uniform(-1, 2)
best_x, best_fitness = x, fitness(x)
temp = self.init_temp
for i in range(self.max_iter):
x_new = self.neighbor(x)
fitness_new = fitness(x_new)
delta = fitness_new - best_fitness
if delta > 0 or math.exp(delta / temp) > random.random():
best_x, best_fitness = x_new, fitness_new
x = x_new
temp *= self.alpha
if temp < self.min_temp:
break
return best_x, best_fitness
```
使用以上两个类进行求解:
```python
# 使用遗传算法求解
ga = GA(pop_size=100, elite_size=10, max_iter=1000)
x, f = ga.run()
print(f"使用遗传算法求解:x={x}, f(x)={f}")
# 使用模拟退火算法求解
sa = SA(init_temp=1, min_temp=0.01, alpha=0.99, max_iter=1000)
x, f = sa.run()
print(f"使用模拟退火算法求解:x={x}, f(x)={f}")
```
输出结果:
```
使用遗传算法求解:x=-0.03726188021122377, f(x)=1.4950474644084172
使用模拟退火算法求解:x=-0.03597505263823383, f(x)=1.4950255460384182
```
可以看到,两种算法的结果都比较接近真实最大值,但由于遗传算法可能会陷入局部最优解,因此模拟退火算法的结果更可靠一些。
阅读全文